共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mlícková K Roux E Athenstaedt K d'Andrea S Daum G Chardot T Nicaud JM 《Applied and environmental microbiology》2004,70(7):3918-3924
Yarrowia lipolytica contains five acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX5 genes, that catalyze the limiting step of peroxisomal beta-oxidation. In this study, we analyzed morphological changes of Y. lipolytica growing in an oleic acid medium and the effect of POX deletions on lipid accumulation. Protrusions involved in the uptake of lipid droplets (LDs) from the medium were seen in electron micrographs of the surfaces of wild-type cells grown on oleic acid. The number of protrusions and surface-bound LDs increased during growth, but the sizes of the LDs decreased. The sizes of intracellular lipid bodies (LBs) and their composition depended on the POX genotype. Only a few, small, intracellular LBs were observed in the mutant expressing only Aox4p (Deltapox2 Deltapox3 Deltapox5), but strains expressing either Aox3p or both Aox3p and Aox4p had the same number of LBs as did the wild type. In contrast, strains expressing either Aox2p or both Aox2p and Aox4p formed fewer, but larger, LBs than did the wild type. The size of the LBs increased proportionately with the amount of triacylglycerols in the LBs of the mutants. In summary, Aox2p expression regulates the size of cellular triacylglycerol pools and the size and number of LBs in which these fatty acids accumulate. 相似文献
3.
A number of factors are involved in the regulation of the amount and distribution of coenzyme Q in cells and tissues. These factors modify preferentially the biosynthetic mechanism in order to keep up an optimal tissue concentration of the lipid. The amount of substrate provided by the mevalonate pathway is able to both up- and down-regulate the velocity of synthesis. At the translation level, regulation occurs by receptor-mediated ligand binding and appears most clearly upon treatment with hormones and peroxisomal inducers. There are a number of pathophysiological conditions when these mechanisms of regulation are modified and explain the decreased coenzyme Q tissue concentrations. It is of considerable interest to establish appropriate physiological, hormonal and drug-mediated conditions in order to counteract disturbed cellular functions caused by coenzyme Q deficiency. 相似文献
4.
5.
6.
Medium-chain acyl coenzyme A dehydrogenase from pig kidney has intrinsic enoyl coenzyme A hydratase activity 总被引:1,自引:0,他引:1
The flavoprotein medium-chain acyl coenzyme A (acyl-CoA) dehydrogenase from pig kidney exhibits an intrinsic hydratase activity toward crotonyl-CoA yielding L-3-hydroxybutyryl-CoA. The maximal turnover number of about 0.5 min-1 is 500-1000-fold slower than the dehydrogenation of butyryl-CoA using electron-transferring flavoprotein as terminal acceptor. trans-2-Octenoyl- and trans-2-hexadecenoyl-CoA are not hydrated significantly. Hydration is not due to contamination with the short-chain enoyl-CoA hydratase crotonase. Several lines of evidence suggest that hydration and dehydrogenation reactions probably utilize the same active site. These two activities are coordinately inhibited by 2-octynoyl-CoA and (methylenecyclopropyl)acetyl-CoA [whose targets are the protein and flavin adenine dinucleotide (FAD) moieties of the dehydrogenase, respectively]. The hydration of crotonyl-CoA is severely inhibited by octanoyl-CoA, a good substrate of the dehydrogenase. The apoenzyme is inactive as a hydratase but recovers activity on the addition of FAD. Compared with the hydratase activity of the native enzyme, the 8-fluoro-FAD enzyme exhibits a roughly 2-fold increased activity, whereas the 5-deaza-FAD dehydrogenase is only 20% as active. A mechanism for this unanticipated secondary activity of the acyl-CoA dehydrogenase is suggested. 相似文献
7.
Incubation of 3-chloropropionyl-CoA with 3-hydroxy-3-methylglutaryl-CoA synthase results in exchange of the C2 proton with solvent as inactivation of enzyme proceeds. This enzyme is also inhibited by S-acrylyl-N-acetylcysteamine; the limiting rate constant for inactivation by the acrylyl derivative (0.36 min-1) slightly exceeds the value measured for chloropropionyl-CoA (0.31 min-1). These observations support the intermediacy of acrylyl-CoA in the chloropropionyl-CoA-dependent inactivation of hydroxymethylglutaryl-CoA synthase. Inhibition of fatty acid synthase by chloropropionyl-CoA is primarily due to alkylation of a reactive cysteine, although secondary reaction with the enzyme's pantetheinyl sulfhydryl occurs. Modification of fatty acid synthase by S-acrylyl-N-acetylcysteamine occurs at a limiting rate (1.8 min-1) that is comparable to that estimated for chloropropionyl-CoA-dependent inactivation. However, this enzyme lacks the ability to deprotonate C2 of an acyl group such as the chloropropionyl moiety. Since such a step would be required to generate an acrylyl group from chloropropionyl-S-enzyme, it is likely that a typical affinity labeling process accounts for inactivation of fatty acid synthase by chloropropionyl-CoA. HMG-CoA lyase is also inhibited by S-acrylyl-N-acetylcysteamine. In contrast to the ability of this reagent to serve as a mechanism-based inhibitor of hydroxymethylglutaryl-CoA synthase and an affinity label of fatty acid synthase, it acts as a group-specific reagent in modifying HMG-CoA lyase (kappa 2 = 86.7 M-1 min-1). 相似文献
8.
9.
A method has been developed that permits the quantitative analysis of [14C]acyl-acyl carrier proteins and [14C]acyl CoAs from a typical reaction mixture. The method is based on (a) the initial extraction of free fatty acids and the less polar lipids into petroleum ether from aqueous isopropanol; (b) the precipitation of [14C]acyl-acyl carrier proteins in the presence of ammonium sulfate and chloroform-methanol; and (c) the final separation of acyl CoAs from the more polar lipids by selective adsorption on neutral alumina gel. All fractions can then be analyzed for the composition of complex lipids and 14C-labeled fatty acids by the usual methods. 相似文献
10.
A compound soluble in organic solvents and synthesized from [14C]acetate by isolated spinach chloroplasts incubated in the dark in the presence of dithiothreitol was shown to be O-acetyl dithiothreitol. The chloroplast system was required for the activation of acetate to acetyl CoA, but the transfer of the acetyl moiety to dithiothreitol was nonenzymatic. The first product of the reaction was shown to be S-acetyl dithiothreitol, but in the presence of an oxidant, simultaneous ring closure and migration of the acetyl group from the thiol to an adjacent hydroxyl group occurred to form an O-acetyl dithiothreitol.The acetyl transfer reaction involving acetyl CoA and dithiothreitol showed a marked pH dependence, being most active at about pH 9 and inoperative below pH 6. All acyl CoAs tested (C2-C18) rapidly labeled dithiothreitol; acetyl acyl carrier protein, and palmityl acyl carrier protein were much less reactive and free fatty acids were unreactive. The thiol reagents dithioerythritol, glutathione, and cysteine, in addition to dithiothreitol, reacted rapidly with acetyl CoA to form the corresponding acetyl mercaptans. 2-Mercaptoethanol was much less reactive; oxidized dithiothreitol was unreactive. The second-order rate constant for acetyl dithiothreitol synthesis was 12.3 m?1 min?1 at pH 8.5 and 30 °C. 相似文献
11.
12.
Control of triglyceride synthesis by the intracellular level of long-chain acyl coenzyme A for lipid synthesis 总被引:1,自引:0,他引:1 下载免费PDF全文
T Kamiryo 《Journal of bacteriology》1983,156(1):447-449
Candida lipolytica mutants defective in acyl coenzyme A synthetase I synthesized triglyceride to a markedly less extent than did the wild-type yeast, when grown on oleic acid. The synthesis of triglyceride was controlled by the level of long-chain acyl coenzyme A available for lipid synthesis, whereas the synthesis of phospholipids was hardly affected. 相似文献
13.
A high molecular weight acyl coenzyme A (acyl-CoA) thioesterase, designated thioesterase II, has been purified 5300-fold from photoheterotrophically grown cells of Rhodopseudomonas sphaeroides. In contrast to R. sphaeroides acyl-CoA thioesterase I [Boyce, S.G., & Lueking, D.R. (1984) Biochemistry 23, 141-147], thioesterase II has a native molecular mass (Mr) of 120,000, is capable of hydrolyzing saturated and unsaturated acyl-CoA substrates with acyl chain lengths ranging from C4 to C18, and is completely insensitive to the serine esterase inhibitor diisopropyl fluorophosphate. Palmitoyl-CoA and stearoyl-CoA are the preferred (lowest Km) saturated acyl-CoA substrates and vaccenoyl-CoA is the preferred unsaturated substrate. However, comparable Vmax values were obtained with a variety of acyl-CoA substrates. Unlike a similar thioesterase present in cells of Escherichia coli [Bonner, W.M., & Bloch, K. (1972) J. Biol. Chem. 247, 3123-3133], R. sphaeroides thioesterase II displays a high ratio of decanoyl-CoA to palmitoyl-CoA activities and exhibits little ability to hydrolyze 3-hydroxyacyl-CoA substrates. Only 3-hydroxydodecanoyl-CoA supported a measurable rate of enzyme activity. With the purification of thioesterase II, the enzymes responsible for greater than 90% of the acyl-CoA thioesterase activity present in cell-free extracts of R. sphaeroides have now been identified. 相似文献
14.
15.
16.
Autoacylation of myelin proteolipid protein with acyl coenzyme A 总被引:7,自引:0,他引:7
Rat brain myelin proteolipid protein (PLP) is known to contain long chain, covalently bound fatty acids. In the course of characterizing the mechanism of acylation, we found that the isolated PLP, in the absence of any membrane fraction, was esterified after incubation with [3H]palmitoyl coenzyme A (CoA). This observation demonstrated that the protein acts as both an acylating enzyme and an acceptor. Thus, acylation occurs by an autocatalytic process. The possibility of a separate acyltransferase that copurifies with PLP was essentially excluded by adding brain subcellular fractions to the reaction mixtures and by changing the isolation procedure. After deacylation, the protein was acylated at a 4-fold greater rate, suggesting that the original sites were reacylated. The palmitoyl-CoA concentration followed Michaelis kinetics, confirming that spontaneous acylation was not occurring. Pulse-chase experiments indicated that the reaction entails net addition of acyl groups. Although fatty acids are bound via an O-ester linkage, free SH groups are required in the reaction. Denaturation of the protein by sodium dodecyl sulfate or heat inhibits the reaction, whereas cerulenin has little or no effect. PO, the major protein in peripheral nerve myelin, is also an acylated protein, but it was not labeled upon incubation of either peripheral myelin or the isolated protein with [3H]palmitoyl-CoA, demonstrating that it is acylated by a different route. Several synthetic peptides derived from PLP sequences with sites known to be acylated in vivo as well as a series of deacylated PLP tryptic peptides were not labeled, indicating that integrity of the protein is required for acylation. Limited proteolysis and peptide mapping showed that the same sites are acylated in vitro or in vivo, suggesting that the autocatalytic acylation reaction is physiological. 相似文献
17.
18.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit. 相似文献
19.
Purification and properties of acyl coenzyme A dehydrogenases from bovine liver. Formation of 2-trans,4-cis-decadienoyl coenzyme A 总被引:3,自引:0,他引:3
Three straight chain acyl-CoA dehydrogenases were purified to apparent homogeneity from bovine liver using 40-70% (NH4)2SO4 precipitation, gel filtration, DEAE-cellulose column chromatography, and preparative electrophoresis. Separation of the acyl-CoA dehydrogenases by these procedures has been efficiently monitored by two newly developed analytical methods: (i) native staining of acyl-CoA dehydrogenases following separation by electrophoresis in polyacrylamide gels and (ii) determination of general acyl-CoA dehydrogenase by means of a specific substrate, 4-cis-decenoyl-CoA. The three acyl-CoA dehydrogenases were classified into short chain, general, and long chain acyl-CoA dehydrogenases on the basis of their chain length specificities according to the nomenclature proposed by Hall and Kamin (Hall, C. L., and Kamin, H. (1975) J. Biol. Chem. 250, 3470-3486). The enzymes gave single protein bands in polyacrylamide gel electrophoresis under denaturing and nondenaturing conditions, and their subunit and native molecular weights were estimated to be 40,300 and 188,000 for short chain acyl-CoA dehydrogenase, 43,300 and 205,000 for general acyl-CoA dehydrogenase, and 45,200 and 172,000 for long chain acyl-CoA dehydrogenase. Long chain and general acyl-CoA dehydrogenases markedly differed in their substrate specificities toward unsaturated acyl-CoA esters with a double bond at position 4. The former oxidized 4-cis-decenoyl-CoA at a rate of only 2.7% of that obtained with decanoyl-CoA as substrate, while for the latter enzyme 4-cis-decenoyl-CoA was even a slightly better substrate than decanoyl-CoA. 2-trans,4-cis-Decenoyl-CoA was identified as the product of this reaction. 相似文献