首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete genome of Acinetobacter oleivorans DR1 contains AqsR and AqsI genes, which are LuxR and LuxI homolog, respectively. In a previous study, we demonstrated that quorum sensing (QS) signals play an important role in biofilm formation and hexadecane biodegradation. However, the regulation of genes controlled by the QS system in DR1 remains unexplored. We constructed an aqsR mutant and performed RNA sequencing analysis to understand the QS system. A total of 353 genes were differentially expressed during the stationary phase of wild-type cells compared to that of the aqsR mutant. AqsR appears to be an exceptionally important regulator because knockout of aqsR affected global gene expression. Genes involved in posttranslational modification, chaperones, cell wall structure, secondary metabolites biosynthesis, and stress defense were highly upregulated only in the wild type. Among upregulated genes, both the AOLE_03905 (putative surface adhesion protein) and the AOLE_11355 (L-asparaginase) genes have putative LuxR binding sites at their promoter regions. Soluble AqsR proteins were successfully purified in Escherichia coli harboring both aqsR and aqsI. Comparison of QS signals in an AqsI–AqsR co-overexpression strain with N-acyl homoserine lactone standards showed that the cognate N-acyl homoserine lactone binding to AqsR might be 3OH C12HSL. Our electrophoretic mobility shift assays with purified AqsR revealed direct binding of AqsR to those promoter regions. Our data showed that AqsR functions as an important regulator and is associated with several phenotypes, such as hexadecane utilization, biofilm formation, and sensitivity to cumene hydroperoxide.  相似文献   

2.
3.

Background

Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs.

Methodology/Principal Findings

By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an α,β unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus.

Conclusions/Significance

Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands.  相似文献   

4.
5.
6.
7.
8.
The quorum‐sensing (QS) response of Vibrio fischeri involves a rapid switch between low and high induction states of the lux operon over a narrow concentration range of the autoinducer (AI) 3‐oxo‐hexanoyl‐L ‐homoserine lactone. In this system, LuxR is an AI‐dependent positive regulator of the lux operon, which encodes the AI synthase. This creates a positive feedback loop common in many bacterial species that exhibit QS‐controlled gene expression. Applying a combination of modeling and experimental analyses, we provide evidence for a LuxR autoregulatory feedback loop that allows LuxR to increase its concentration in the cell during the switch to full lux activation. Using synthetic lux gene fragments, with or without the AI synthase gene, we show that the buildup of LuxR provides more sensitivity to increasing AI, and promotes the induction process. Elevated LuxR levels buffer against spurious variations in AI levels ensuring a robust response that endows the system with enhanced hysteresis. LuxR autoregulation also allows for two distinct responses within the same cell population.  相似文献   

9.
10.
Two focused libraries based on two types of compounds, that is, thiazolidinediones and dioxazaborocanes were designed. Structural resemblances can be found between thiazolidinediones and well-known furanone type quorum sensing (QS) inhibitors such as N-acylaminofuranones, and/or acyl-homoserine lactone signaling molecules, while dioxazaborocanes structurally resemble previously reported oxazaborolidine derivatives which antagonized autoinducer 2 (AI-2) binding to its receptor. Because of this, we hypothesized that these compounds could affect AI-2 QS in Vibrio harveyi. Although all compounds blocked QS, the thiazolidinediones were the most active AI-2 QS inhibitors, with EC50 values in the low micromolar range. Their mechanism of inhibition was elucidated by measuring the effect on bioluminescence in a series of V. harveyi QS mutants and by DNA-binding assays with purified LuxR protein. The active compounds neither affected bioluminescence as such nor the production of AI-2. Instead, our results indicate that the thiazolidinediones blocked AI-2 QS in V. harveyi by decreasing the DNA-binding ability of LuxR. In addition, several dioxazaborocanes were found to block AI-2 QS by targeting LuxPQ.  相似文献   

11.
12.
13.
14.
Quorum sensing is the process of cell-to-cell communication by which bacteria communicate via secreted signal molecules called autoinducers. As cell population density increases, the accumulation of autoinducers leads to co-ordinated changes in gene expression across the bacterial community. The marine bacterium, Vibrio harveyi, uses three autoinducers to achieve intra-species, intra-genera and inter-species cell-cell communication. The detection of these autoinducers ultimately leads to the production of LuxR, the quorum-sensing master regulator that controls expression of the genes in the quorum-sensing regulon. LuxR is a member of the TetR protein superfamily; however, unlike other TetR repressors that typically repress their own gene expression and that of an adjacent operon, LuxR is capable of activating and repressing a large number of genes. Here, we used protein binding microarrays and a two-layered bioinformatics approach to show that LuxR binds a 21 bp consensus operator with dyad symmetry. In vitro and in vivo analyses of two promoters directly regulated by LuxR allowed us to identify those bases that are critical for LuxR binding. Together, the in silico and biochemical results enabled us to scan the genome and identify novel targets of LuxR in V. harveyi and thus expand the understanding of the quorum-sensing regulon.  相似文献   

15.
16.
Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.  相似文献   

17.
18.
19.
20.
Master quorum sensing (QS) regulator LuxR of Vibrio harveyi is a unique member of the TetR protein superfamily. Recent studies have demonstrated the contribution of thiazolidinedione analogues in blocking QS by decreasing the DNA-binding ability of LuxR. However, the precise mechanism of thiazolidinedione analogues binding to LuxR is still unclear. In the present study, molecular docking combined with molecular dynamics (MD) simulations was performed to understand the mechanism of ligand binding to the protein. The binding pattern of thiazolidinedione analogues showed strong hydrogen bonding interactions with the amine group (NH) of polar amino acid residue Asn133 and carbonyl (C=O) interaction with negatively charged amino acid residue Gln137 in the binding site of LuxR. The stability of the protein–ligand complexes was confirmed by running 50 ns of MD simulations. Further, the four-featured pharmacophore hypothesis (AHHD) consists of one acceptor (A), two hydrophobic regions (HH) and one donor (D) group was used to screen compounds from ChemBridge database. The identified hit molecules were shown to have excellent pharmacokinetic properties under the acceptable range. Based on the computational studies, ChemBridge_5343641 was selected for in vitro assays. The 1-(4-chlorophenoxy)-3-[(4,6-dimethyl-2-pyrimidinyl)thio]-2-propanol (ChemBridge_5343641) showed significant reduction in bioluminescence in a dose-dependent manner. In addition, ChemBridge_5343641 inhibits biofilm formation and motility in V. harveyi. The result from the study suggests that ChemBridge_5343641 could serve as an anti-QS molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号