首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The paralogous multifunctional adaptor proteins YAP and TAZ are the nuclear effectors of the Hippo pathway, a central mechanism of organ size control and stem cell self-renewal. WW domains, mediators of protein-protein interactions, are essential for YAP and TAZ function, enabling interactions with PPxY motifs of numerous partner proteins. YAP has single and double WW domain isoforms (YAP1 and YAP2) whereas only a single WW domain isoform of TAZ has been described to date. Here we identify the first example of a double WW domain isoform of TAZ. Using NMR, we have characterized conformational features and peptide binding of YAP and TAZ tandem WW domains (WW1-WW2). The solution structure of YAP WW2 confirms that it has a canonical three-stranded antiparallel β-sheet WW domain fold. While chemical shift-based analysis indicates that the WW domains in the tandem WW pairs retain the characteristic WW domain fold, 15N relaxation data show that, within the respective WW pairs, YAP WW1 and both WW1 and WW2 of TAZ undergo conformational exchange. 15N relaxation data also indicate that the linker between the WW domains is flexible in both YAP and TAZ. Within both YAP and TAZ tandem WW pairs, WW1 and WW2 bind single PPxY-containing peptide ligand concurrently and noncooperatively with sub-mM affinity. YAP and TAZ WW1-WW2 bind a dual PPxY-containing peptide with approximately 6-fold higher affinity. Our results indicate that both WW domains in YAP and TAZ are functional and capable of enhanced affinity binding to multi-PPxY partner proteins such as LATS1, ErbB4, and AMOT.  相似文献   

4.
5.
6.
Reactive oxygen species (ROS) are constantly produced in cells, an excess of which causes oxidative stress. ROS has been linked to regulation of the Hippo pathway; however, the underlying detailed mechanisms remain unclear. Here, we report that MOB1, a substrate of MST1/2 and co-activator of LATS1/2 in the canonical Hippo pathway, interacts with and is acetylated at lysine 11 by acetyltransferase CBP and deacetylated by HDAC6. MOB1-K11 acetylation stabilizes itself by reducing its binding capacity with E3 ligase Praja2 and subsequent ubiquitination. MOB1-K11 acetylation increases its phosphorylation and activates LATS1. Importantly, upstream oxidative stress signals promote MOB1 acetylation by suppressing CBP degradation, independent of MST1/2 kinase activity and HDAC6 deacetylation effect, thereby linking oxidative stress to activation of the Hippo pathway. Functionally, the acetylation-deficient mutant MOB1-K11R promotes lung cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo, compared to the wild-type MOB1. Clinically, acetylated MOB1 corresponds to better prediction of overall survival in patients with non-small cell lung cancer. Therefore, as demonstrated, an oxidative stress-CBP regulatory axis controls MOB1-K11 acetylation and activates LATS1, thereby activating the Hippo pathway and suppressing YAP/TAZ nuclear translocation and tumor progression.  相似文献   

7.
8.
YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
The Ras Association Domain Family 1A (RASSF1A) gene is one of the most frequently silenced genes in human cancer. RASSF1A has been shown to interact with the proapoptotic kinase MST1. Recent work in Drosophila has led to the discovery of a new tumor-suppressor pathway involving the Drosophila MST1 and MST2 ortholog, Hippo, as well as the Lats/Warts serine/threonine kinase and a protein named Salvador (Sav). Little is known about this pathway in mammalian cells. We report that complexes consisting of RASSF1A, MST2, WW45 (the human ortholog of Sav), and LATS1 exist in human cells. MST2 enhances the RASSF1A-WW45 interaction, which requires the C-terminal SARAH domain of both proteins. Components of this complex are localized at centrosomes and spindle poles from interphase to telophase and at the midbody during cytokinesis. Both RASSF1A and WW45 activate MST2 by promoting MST2 autophosphorylation and LATS1 phosphorylation. Mitosis is delayed in Rassf1a(-/-) mouse embryo fibroblasts and frequently results in cytokinesis failure, similar to what has been observed for LATS1-deficient cells. RASSF1A, MST2, or WW45 can rescue this defect. The complex of RASSF1A, MST2, WW45, and LATS1 consists of several tumor suppressors, is conserved in mammalian cells, and appears to be involved in controlling mitotic exit.  相似文献   

18.
Actin cytoskeletal damage induces inactivation of the oncoprotein YAP (Yes‐associated protein). It is known that the serine/threonine kinase LATS (large tumour suppressor) inactivates YAP by phosphorylating its Ser127 and Ser381 residues. However, the events downstream of actin cytoskeletal changes that are involved in the regulation of the LATS–YAP pathway and the mechanism by which LATS differentially phosphorylates YAP on Ser127 and Ser381 in vivo have remained elusive. Here, we show that cyclic AMP (cAMP)‐dependent protein kinase (PKA) phosphorylates LATS and thereby enhances its activity sufficiently to phosphorylate YAP on Ser381. We also found that PKA activity is involved in all contexts previously reported to trigger the LATS–YAP pathway, including actin cytoskeletal damage, G‐protein‐coupled receptor activation, and engagement of the Hippo pathway. Inhibition of PKA and overexpression of YAP cooperate to transform normal cells and amplify neural progenitor pools in developing chick embryos. We also implicate neurofibromin 2 as an AKAP (A‐kinase‐anchoring protein) scaffold protein that facilitates the function of the cAMP/PKA–LATS–YAP pathway. Our study thus incorporates PKA as novel component of the Hippo pathway.  相似文献   

19.
20.
Lee JH  Kim TS  Yang TH  Koo BK  Oh SP  Lee KP  Oh HJ  Lee SH  Kong YY  Kim JM  Lim DS 《The EMBO journal》2008,27(8):1231-1242
The role and molecular mechanisms of a new Hippo signalling pathway are not fully understood in mammals. Here, we generated mice that lack WW45 and revealed a crucial role for WW45 in cell-cycle exit and epithelial terminal differentiation. Many organs in the mutant mouse embryos displayed hyperplasia accompanied by defects in terminal differentiation of epithelial progenitor cells owing to impaired proliferation arrest rather than intrinsic acceleration of proliferation during differentiation. Importantly, the MST1 signalling pathway is specifically activated in differentiating epithelial cells. Moreover, WW45 is required for MST1 activation and translocation to the nucleus for subsequent LATS1/2 activation upon differentiation signal. LATS1/2 phosphorylates YAP, which, in turn, translocates from the nucleus into the cytoplasm, resulting in cell-cycle exit and terminal differentiation of epithelial progenitor cells. Collectively, these data provide compelling evidence that WW45 is a key mediator of MST1 signalling in the coordinate coupling of proliferation arrest with terminal differentiation for proper epithelial tissue development in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号