首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
《Epigenetics》2013,8(8):557-563
The patterns of DNA methylation, referred to as the “methylome”, must be faithfully propagated for proper development of plants and mammals. However, it has been unclear to which extent transgenerational epigenetic inheritance will be affected after DNA methylation distribution has been altered. Recently, three reports have addressed this issue in the model plant Arabidopsis thaliana. Here we revisit the results of these experiments addressing the stability of epigenetic inheritance within two populations of epigenetic recombinant inbred lines (epiRILs), in which mosaic epigenomes were subjected to inbreeding for multiple generations. The manner in which the epigenetic variation was induced differed between the two populations, one by adversely affecting chromatin remodeling and the second by impairing the maintenance of DNA methylation, yet the comparison of the results provides a broader view of transgenerational epigenetic inheritance that may find parallels in other organisms.  相似文献   

4.
5.
DNA methylation in animal development   总被引:1,自引:0,他引:1  
Nuclear transfer experiments have demonstrated that epigenetic mechanisms operate to limit gene expression during animal development. In somatic cells, silenced genes are associated with defined chromatin states which are characterised by hypermethylation of DNA, hypoacetylation of histones and specific patterns of methylation at distinct residues of the N-terminal tails of histone H3 and H4. This review describes the role of the DNA methylation-mediated repression system (Dnmt1's, MeCPs and MBDs and associated chromatin remodelling activities) in animal development. DNA methylation is essential for normal vertebrate development but has distinct regulatory roles in non-mammalian and mammalian vertebrates. In mammals, DNA methylation has an additional role in regulating imprinting. This suggests that epigenetic regulation is plastic in its application and should be considered in a developmental context that may be species specific.  相似文献   

6.
Proper establishment and faithful maintenance of epigenetic information is crucial for the correct development of complex organisms. For mammals, it is now accepted that DNA methylation is an important mechanism for establishing stable heritable epigenetic marks. The distribution of methylation in the genome is not random, and patterns of methylated and unmethylated DNA are well regulated during normal development. The molecular mechanisms by which methylation patterns are established and maintained are complex and just beginning to be understood. In this review, we summarize recent progress in understanding the regulation of mammalian DNA methylation patterns, with an emphasis on the emerging roles of several protein and possible RNA factors. We also revisit the stochastic model of maintenance methylation and discuss its implications for epigenetic fidelity and gene regulation.  相似文献   

7.
Genetic information embedded in DNA sequence and the epigenetic information marked by modifications on DNA and histones are essential for the life of eukaryotes. Cells have evolved mechanisms of DNA duplication and chromatin restoration to ensure the inheritance of genetic and epigenetic information during cell division and development. In this review, we focus on the maintenance of epigenetic landscape during chromatin dynamics which requires the orchestration of histones and their chaperones. We discuss how epigenetic marks are re-established in the assembly of new chromatin after DNA replication and repair, highlighting the roles of CAF-1 in the process of changing chromatin state. The functions of CAF-1 provide a link between chromatin assembly and epigenetic restoration.  相似文献   

8.
Imprinted genes are epigenetically regulated so that only one allele is expressed in a parent-of-origin-dependent manner. Although they represent a small subset of the mammalian genome, imprinted genes are essential for normal development. The regulatory mechanisms underlying imprinting are complex and have been the subject of extensive investigation. DNA methylation is the best-established epigenetic mark that is critical for the allele-specific expression of imprinted genes. This mark must be correctly established in the germline, maintained throughout life, and erased and reestablished in the germline the next generation. These events coincide with the genome-wide epigenetic reprogramming that occurs during gametogenesis and early embryogenesis; therefore, the establishment and maintenance of DNA methylation must be tightly regulated. Studies on enzymes that participate in both de novo methylation and its maintenance (i.e., the DNMT family) have provided information on how methylation influences imprinting. However, many aspects of the regulation of DNA methylation are unknown, including how methylation complexes are targeted and the molecular mechanisms underlying DNA demethylation. In this review we focus on the epigenetic changes that occur in the germline and early embryo, with an emphasis on imprinting. We summarize recent findings on factors influencing DNA methylation establishment, maintenance, and erasure that have further elucidated the mechanisms of imprinting, while highlighting topics that require further investigation.  相似文献   

9.
张旭  李晴 《生命科学》2014,(11):1176-1186
真核生物中的DNA复制,不但要保证DNA编码的基因组信息高保真复制,也要保证染色质结构所蕴含的表观遗传组稳定传递,这个过程对于维持基因组的完整性和稳定性至关重要。时至今日,人们对DNA复制的机制已经有了深入的认识,但是对染色质复制以及表观遗传信息传递的了解才刚刚开始。组蛋白是染色质结构中最主要的蛋白组成部分,其上面丰富的转录后修饰是表观遗传调控的核心方式之一。从最近几年组蛋白的修饰研究进展入手,主要综述在DNA复制过程中组蛋白修饰如何参与染色质复制的调控。  相似文献   

10.
11.
Moazed D 《Cell》2011,146(4):510-518
Studies in eukaryotes ranging from yeast to mammals indicate that specific chromatin structures can be inherited following DNA replication via mechanisms acting in cis. Both the initial establishment of such chromatin structures and their inheritance require sequence-dependent specificity factors and changes in histone posttranslational modifications. Here I propose models for the maintenance of epigenetic information in which DNA silencers or nascent RNA scaffolds act as sensors that work cooperatively with parentally inherited histones to re-establish chromatin states following DNA replication.  相似文献   

12.
DNA methylation is an epigenetic mark that is essential for the development of mammals; it is frequently altered in diseases ranging from cancer to psychiatric disorders. The presence of DNA methylation attracts specialized methyl-DNA binding factors that can then recruit chromatin modifiers. These methyl-CpG binding proteins (MBPs) have key biological roles and can be classified into three structural families: methyl-CpG binding domain (MBD), zinc finger, and SET and RING finger-associated (SRA) domain. The structures of MBD and SRA proteins bound to methylated DNA have been previously determined and shown to exhibit two very different modes of methylated DNA recognition. The last piece of the puzzle has been recently revealed by the structural resolution of two different zinc finger proteins, Kaiso and ZFP57, in complex with methylated DNA. These structures show that the two methyl-CpG binding zinc finger proteins adopt differential methyl-CpG binding modes. Nonetheless, there are similarities with the MBD proteins suggesting some commonalities in methyl-CpG recognition across the various MBP domains. These fresh insights have consequences for the analysis of the many other zinc finger proteins present in the genome, and for the biology of methyl-CpG binding zinc finger proteins.  相似文献   

13.
Cancer cells accumulate widespread local and global chromatin changes and the source of this instability remains a key question. Here we hypothesize that chromatin alterations including unscheduled silencing can arise as a consequence of perturbed histone dynamics in response to replication stress. Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono‐methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor‐promoting insults is recognized as a significant source of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis.  相似文献   

14.
15.
LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.  相似文献   

16.
17.
In mammals, heterochromatin is characterized by DNA methylation at CpG dinucleotides and methylation at lysine 9 of histone H3. It is currently unclear whether there is a coordinated transmission of these two epigenetic modifications through DNA replication. Here we show that the methyl-CpG binding protein MBD1 forms a stable complex with histone H3-K9 methylase SETDB1. Moreover, during DNA replication, MBD1 recruits SETDB1 to the large subunit of chromatin assembly factor CAF-1 to form an S phase-specific CAF-1/MBD1/SETDB1 complex that facilitates methylation of H3-K9 during replication-coupled chromatin assembly. In the absence of MBD1, H3-K9 methylation is lost at multiple genomic loci and results in activation of p53BP2 gene, normally repressed by MBD1 in HeLa cells. Our data suggest a model in which H3-K9 methylation by SETDB1 is dependent on MBD1 and is heritably maintained through DNA replication to support the formation of stable heterochromatin at methylated DNA.  相似文献   

18.
19.
Patkin EL  Suchkova IO 《Tsitologiia》2006,48(7):578-594
Epigenetic modifications, such as monoallelic DNA methylation, covalent histone modifications, nonhistone proteins, chromatin folding, heterochromatinization, spatial nucleus organization are reviewed with regard to establishment and maintenance of imprinting in mammals. Special attention is paid to repeated DNA sequences as intermediates of the above epigenetic modifications. A suggestion is put forward relative to importance of preimplantation development, in particular, to chromosome organization and segregation in the establishment of imprinting. Some futher directions of imprinting mechanisms are also discussed.  相似文献   

20.
Polycomb-group proteins mark specific chromatin conformations in embryonic and somatic stem cells that are critical for maintenance of their "stemness". These proteins also mark altered chromatin modifications identified in various cancers. In normal differentiated cells or advanced cancerous cells, these polycomb-associated loci are frequently associated with increased DNA methylation. It has thus been hypothesized that changes in DNA methylation status within polycomb-associated loci may dictate cell fate and that abnormal methylation within these loci may be associated with tumor development. To assess this, we examined the methylation states of four polycomb target loci -Trip10, Casp8AP2, ENSA, and ZNF484 - in liver cancer. These four targets were selected because their methylation levels are increased during mesenchymal stem cell-to-liver differentiation. We found that these four loci were hypomethylated in most early-stage liver cancer specimens. For comparison, two non-polycomb tumor suppressor genes, HIC1 and RassF1A, were also examined. Whereas the methylation level of HIC1 did not differ significantly between normal and tumor samples, RassF1A was significantly hypermethylated in liver tumor samples. Unsupervised clustering analysis classified the methylation changes within polycomb and non-polycomb targets to be independent, indicating independent epigenetic evolution. Thus, pre-deposited polycomb marks within somatic stem cells may contribute to the determination of methylation changes during hepatic tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号