首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the U.S. in early 2020, heterogenous and incomplete county-scale data on COVID-19 hindered effective interventions in the pandemic. While numbers of deaths can be used to estimate actual number of infections after a time lag, counties with low death counts early on have considerable uncertainty about true numbers of cases in the future. Here we show that supplementing county-scale mortality statistics with socioeconomic data helps estimate true numbers of COVID-19 infections in low-data counties, and hence provide an early warning of future concern. We fit a LASSO negative binomial regression to select a parsimonious set of five predictive variables from thirty-one county-level covariates. Of these, population density, public transportation use, voting patterns and % African-American population are most predictive of higher COVID-19 death rates. To test the model, we show that counties identified as under-estimating COVID-19 on an early date (April 17) have relatively higher deaths later (July 1) in the pandemic.  相似文献   

2.
While much effort has gone into building predictive models of the COVID-19 pandemic, some have argued that early exponential growth combined with the stochastic nature of epidemics make the long-term prediction of contagion trajectories impossible. We conduct two complementary studies to assess model features supporting better long-term predictions. First, we leverage the diverse models contributing to the CDC repository of COVID-19 USA death projections to identify factors associated with prediction accuracy across different projection horizons. We find that better long-term predictions correlate with: (1) capturing the physics of transmission (instead of using black-box models); (2) projecting human behavioral reactions to an evolving pandemic; and (3) resetting state variables to account for randomness not captured in the model before starting projection. Second, we introduce a very simple model, SEIRb, that incorporates these features, and few other nuances, offers informative predictions for as far as 20-weeks ahead, with accuracy comparable with the best models in the CDC set. Key to the long-term predictive power of multi-wave COVID-19 trajectories is capturing behavioral responses endogenously: balancing feedbacks where the perceived risk of death continuously changes transmission rates through the adoption and relaxation of various Non-Pharmaceutical Interventions (NPIs).  相似文献   

3.
Accurate estimates of infection prevalence and seroprevalence are essential for evaluating and informing public health responses and vaccination coverage needed to address the ongoing spread of COVID-19 in each United States (U.S.) state. However, reliable, timely data based on representative population sampling are unavailable, and reported case and test positivity rates are highly biased. A simple data-driven Bayesian semi-empirical modeling framework was developed and used to evaluate state-level prevalence and seroprevalence of COVID-19 using daily reported cases and test positivity ratios. The model was calibrated to and validated using published state-wide seroprevalence data, and further compared against two independent data-driven mathematical models. The prevalence of undiagnosed COVID-19 infections is found to be well-approximated by a geometrically weighted average of the positivity rate and the reported case rate. Our model accurately fits state-level seroprevalence data from across the U.S. Prevalence estimates of our semi-empirical model compare favorably to those from two data-driven epidemiological models. As of December 31, 2020, we estimate nation-wide a prevalence of 1.4% [Credible Interval (CrI): 1.0%-1.9%] and a seroprevalence of 13.2% [CrI: 12.3%-14.2%], with state-level prevalence ranging from 0.2% [CrI: 0.1%-0.3%] in Hawaii to 2.8% [CrI: 1.8%-4.1%] in Tennessee, and seroprevalence from 1.5% [CrI: 1.2%-2.0%] in Vermont to 23% [CrI: 20%-28%] in New York. Cumulatively, reported cases correspond to only one third of actual infections. The use of this simple and easy-to-communicate approach to estimating COVID-19 prevalence and seroprevalence will improve the ability to make public health decisions that effectively respond to the ongoing COVID-19 pandemic.  相似文献   

4.
The COVID-19 pandemic has highlighted delayed reporting as a significant impediment to effective disease surveillance and decision-making. In the absence of timely data, statistical models which account for delays can be adopted to nowcast and forecast cases or deaths. We discuss the four key sources of systematic and random variability in available data for COVID-19 and other diseases, and critically evaluate current state-of-the-art methods with respect to appropriately separating and capturing this variability. We propose a general hierarchical approach to correcting delayed reporting of COVID-19 and apply this to daily English hospital deaths, resulting in a flexible prediction tool which could be used to better inform pandemic decision-making. We compare this approach to competing models with respect to theoretical flexibility and quantitative metrics from a 15-month rolling prediction experiment imitating a realistic operational scenario. Based on consistent leads in predictive accuracy, bias, and precision, we argue that this approach is an attractive option for correcting delayed reporting of COVID-19 and future epidemics.  相似文献   

5.
Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with Rt<1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.  相似文献   

6.
BackgroundMultiple Coronavirus Disease 2019 (COVID-19) vaccines appear to be safe and efficacious, but only high-income countries have the resources to procure sufficient vaccine doses for most of their eligible populations. The World Health Organization has published guidelines for vaccine prioritisation, but most vaccine impact projections have focused on high-income countries, and few incorporate economic considerations. To address this evidence gap, we projected the health and economic impact of different vaccination scenarios in Sindh Province, Pakistan (population: 48 million).Methods and findingsWe fitted a compartmental transmission model to COVID-19 cases and deaths in Sindh from 30 April to 15 September 2020. We then projected cases, deaths, and hospitalisation outcomes over 10 years under different vaccine scenarios. Finally, we combined these projections with a detailed economic model to estimate incremental costs (from healthcare and partial societal perspectives), disability-adjusted life years (DALYs), and incremental cost-effectiveness ratio (ICER) for each scenario.We project that 1 year of vaccine distribution, at delivery rates consistent with COVAX projections, using an infection-blocking vaccine at $3/dose with 70% efficacy and 2.5-year duration of protection is likely to avert around 0.9 (95% credible interval (CrI): 0.9, 1.0) million cases, 10.1 (95% CrI: 10.1, 10.3) thousand deaths, and 70.1 (95% CrI: 69.9, 70.6) thousand DALYs, with an ICER of $27.9 per DALY averted from the health system perspective. Under a broad range of alternative scenarios, we find that initially prioritising the older (65+) population generally prevents more deaths. However, unprioritised distribution has almost the same cost-effectiveness when considering all outcomes, and both prioritised and unprioritised programmes can be cost-effective for low per-dose costs. High vaccine prices ($10/dose), however, may not be cost-effective, depending on the specifics of vaccine performance, distribution programme, and future pandemic trends.The principal drivers of the health outcomes are the fitted values for the overall transmission scaling parameter and disease natural history parameters from other studies, particularly age-specific probabilities of infection and symptomatic disease, as well as social contact rates. Other parameters are investigated in sensitivity analyses.This study is limited by model approximations, available data, and future uncertainty. Because the model is a single-population compartmental model, detailed impacts of nonpharmaceutical interventions (NPIs) such as household isolation cannot be practically represented or evaluated in combination with vaccine programmes. Similarly, the model cannot consider prioritising groups like healthcare or other essential workers. The model is only fitted to the reported case and death data, which are incomplete and not disaggregated by, e.g., age. Finally, because the future impact and implementation cost of NPIs are uncertain, how these would interact with vaccination remains an open question.ConclusionsCOVID-19 vaccination can have a considerable health impact and is likely to be cost-effective if more optimistic vaccine scenarios apply. Preventing severe disease is an important contributor to this impact. However, the advantage of prioritising older, high-risk populations is smaller in generally younger populations. This reduction is especially true in populations with more past transmission, and if the vaccine is likely to further impede transmission rather than just disease. Those conditions are typical of many low- and middle-income countries.

In a modelling study, Carl A B Pearson and coauthors investigate the health impact and cost-effectiveness of various COVID-19 vaccination scenarios in Sindh Province, Pakistan  相似文献   

7.
周帅 《广西植物》2023,43(8):1478-1487
森林是维持生物多样性的重要保障,森林面积的损失常常会导致区域生物多样性的降低或丧失。为探讨新冠疫情对全球生物多样性的影响,该文利用Image J软件筛选出全球生物多样性热点地区占国土面积超60%的国家作为研究对象,以全球生物多样性热点地区的森林损失面积、生物多样性完整性数据、年度(2020年和2021年)新冠疫情感染数据、国内生产总值(GDP)为研究对象,进行关联分析、线性混合效应模型构建和回归预测。结果表明:虽然新冠病毒的每百万人口感染数量与森林损失面积表现为显著负相关,具体表现为新冠疫情显著减少了因城市和农业大规模扩张而导致的森林损失面积,但在新冠疫情暴发的2年(2020年和2021年)期间,全球生物多样性热点地区的森林损失总量仍然持续上升,主要原因是新冠疫情间接加速了人工林和天然林的采伐。回归模型预测显示,新冠疫情期间,全球生物多样性热点地区的森林损失面积在2020年和2021年分别增加了5.83%和21.78%。综上表明,虽然新冠疫情对生物多样性热点地区的森林损失具有一定的抑制作用,但森林损失面积仍然在增加。该研究结果为制定生物多样性的保护措施提供了数据支撑。  相似文献   

8.
The main contribution of this article is to report general statistics about COVID-19 in Brazil, based on analysis of accumulated series of confirmed cases, deaths and lethality rates, in addition to presenting graphs of moving averages for states and municipalities. The data show that the pandemic in Brazil has grown rapidly since February 25th (date of the first reported case). Furthermore, the lethality rate of COVID-19 in Brazil is greater than in many other Latin American countries (Chile, Argentina, Uruguay and Paraguay). However, the number of new confirmed cases in Brazil has little statistical relevance because only a small part of the population has been tested. In relation to Brazilian municipalities, we highlight the 10 states with the highest lethality rates, ranked from highest to lowest. Also, predictions about the increaseor decrease innew cases and deaths for states and capital cities are presented. These results can help managers and researchers to better guide their decisions regarding COVID-19.  相似文献   

9.
Ingrid Parmentier  Ryan J. Harrigan  Wolfgang Buermann  Edward T. A. Mitchard  Sassan Saatchi  Yadvinder Malhi  Frans Bongers  William D. Hawthorne  Miguel E. Leal  Simon L. Lewis  Louis Nusbaumer  Douglas Sheil  Marc S. M. Sosef  Kofi Affum‐Baffoe  Adama Bakayoko  George B. Chuyong  Cyrille Chatelain  James A. Comiskey  Gilles Dauby  Jean‐Louis Doucet  Sophie Fauset  Laurent Gautier  Jean‐François Gillet  David Kenfack  François N. Kouamé  Edouard K. Kouassi  Lazare A. Kouka  Marc P. E. Parren  Kelvin S.‐H. Peh  Jan M. Reitsma  Bruno Senterre  Bonaventure Sonké  Terry C. H. Sunderland  Mike D. Swaine  Mbatchou G. P. Tchouto  Duncan Thomas  Johan L. C. H. Van Valkenburg  Olivier J. Hardy 《Journal of Biogeography》2011,38(6):1164-1176
Aim Our aim was to evaluate the extent to which we can predict and map tree alpha diversity across broad spatial scales either by using climate and remote sensing data or by exploiting spatial autocorrelation patterns. Location Tropical rain forest, West Africa and Atlantic Central Africa. Methods Alpha diversity estimates were compiled for trees with diameter at breast height ≥ 10 cm in 573 inventory plots. Linear regression (ordinary least squares, OLS) and random forest (RF) statistical techniques were used to project alpha diversity estimates at unsampled locations using climate data and remote sensing data [Moderate Resolution Imaging Spectroradiometer (MODIS), normalized difference vegetation index (NDVI), Quick Scatterometer (QSCAT), tree cover, elevation]. The prediction reliabilities of OLS and RF models were evaluated using a novel approach and compared to that of a kriging model based on geographic location alone. Results The predictive power of the kriging model was comparable to that of OLS and RF models based on climatic and remote sensing data. The three models provided congruent predictions of alpha diversity in well‐sampled areas but not in poorly inventoried locations. The reliability of the predictions of all three models declined markedly with distance from points with inventory data, becoming very low at distances > 50 km. According to inventory data, Atlantic Central African forests display a higher mean alpha diversity than do West African forests. Main conclusions The lower tree alpha diversity in West Africa than in Atlantic Central Africa may reflect a richer regional species pool in the latter. Our results emphasize and illustrate the need to test model predictions in a spatially explicit manner. Good OLS or RF model predictions from inventory data at short distance largely result from the strong spatial autocorrelation displayed by both the alpha diversity and the predictive variables rather than necessarily from causal relationships. Our results suggest that alpha diversity is driven by history rather than by the contemporary environment. Given the low predictive power of models, we call for a major effort to broaden the geographical extent and intensity of forest assessments to expand our knowledge of African rain forest diversity.  相似文献   

10.
The world continues to face a life-threatening viral pandemic. The virus underlying the Coronavirus Disease 2019 (COVID-19), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has caused over 98 million confirmed cases and 2.2 million deaths since January 2020. Although the most recent respiratory viral pandemic swept the globe only a decade ago, the way science operates and responds to current events has experienced a cultural shift in the interim. The scientific community has responded rapidly to the COVID-19 pandemic, releasing over 125,000 COVID-19–related scientific articles within 10 months of the first confirmed case, of which more than 30,000 were hosted by preprint servers. We focused our analysis on bioRxiv and medRxiv, 2 growing preprint servers for biomedical research, investigating the attributes of COVID-19 preprints, their access and usage rates, as well as characteristics of their propagation on online platforms. Our data provide evidence for increased scientific and public engagement with preprints related to COVID-19 (COVID-19 preprints are accessed more, cited more, and shared more on various online platforms than non-COVID-19 preprints), as well as changes in the use of preprints by journalists and policymakers. We also find evidence for changes in preprinting and publishing behaviour: COVID-19 preprints are shorter and reviewed faster. Our results highlight the unprecedented role of preprints and preprint servers in the dissemination of COVID-19 science and the impact of the pandemic on the scientific communication landscape.

An analysis of bioRxiv and medRxiv during the first 10 months of the COVID-19 pandemic reveals that the pandemic has resulted in a cultural shift in the use of preprints for disseminating pandemic-related science.  相似文献   

11.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adjustment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France.  相似文献   

12.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic respiratory infectious disease COVID-19. However, clinical manifestations and outcomes differ significantly among COVID-19 patients, ranging from asymptomatic to extremely severe, and it remains unclear what drives these disparities. Here, we studied 159 sequentially enrolled hospitalized patients with COVID-19-associated pneumonia from Brescia, Italy using the VirScan phage-display method to characterize circulating antibodies binding to 96,179 viral peptides encoded by 1,276 strains of human viruses. SARS-CoV-2 infection was associated with a marked increase in immune antibody repertoires against many known pathogenic and non-pathogenic human viruses. This antiviral antibody response was linked to longitudinal trajectories of disease severity and was further confirmed in additional 125 COVID-19 patients from the same geographical region in Northern Italy. By applying a machine-learning-based strategy, a viral exposure signature predictive of COVID-19-related disease severity linked to patient survival was developed and validated. These results provide a basis for understanding the role of memory B-cell repertoire to viral epitopes in COVID-19-related symptoms and suggest that a unique anti-viral antibody repertoire signature may be useful to define COVID-19 clinical severity.  相似文献   

13.
BackgroundCoronavirus Disease 2019 (COVID-19) excess deaths refer to increases in mortality over what would normally have been expected in the absence of the COVID-19 pandemic. Several prior studies have calculated excess deaths in the United States but were limited to the national or state level, precluding an examination of area-level variation in excess mortality and excess deaths not assigned to COVID-19. In this study, we take advantage of county-level variation in COVID-19 mortality to estimate excess deaths associated with the pandemic and examine how the extent of excess mortality not assigned to COVID-19 varies across subsets of counties defined by sociodemographic and health characteristics.Methods and findingsIn this ecological, cross-sectional study, we made use of provisional National Center for Health Statistics (NCHS) data on direct COVID-19 and all-cause mortality occurring in US counties from January 1 to December 31, 2020 and reported before March 12, 2021. We used data with a 10-week time lag between the final day that deaths occurred and the last day that deaths could be reported to improve the completeness of data. Our sample included 2,096 counties with 20 or more COVID-19 deaths. The total number of residents living in these counties was 319.1 million. On average, the counties were 18.7% Hispanic, 12.7% non-Hispanic Black, and 59.6% non-Hispanic White. A total of 15.9% of the population was older than 65 years. We first modeled the relationship between 2020 all-cause mortality and COVID-19 mortality across all counties and then produced fully stratified models to explore differences in this relationship among strata of sociodemographic and health factors. Overall, we found that for every 100 deaths assigned to COVID-19, 120 all-cause deaths occurred (95% CI, 116 to 124), implying that 17% (95% CI, 14% to 19%) of excess deaths were ascribed to causes of death other than COVID-19 itself. Our stratified models revealed that the percentage of excess deaths not assigned to COVID-19 was substantially higher among counties with lower median household incomes and less formal education, counties with poorer health and more diabetes, and counties in the South and West. Counties with more non-Hispanic Black residents, who were already at high risk of COVID-19 death based on direct counts, also reported higher percentages of excess deaths not assigned to COVID-19. Study limitations include the use of provisional data that may be incomplete and the lack of disaggregated data on county-level mortality by age, sex, race/ethnicity, and sociodemographic and health characteristics.ConclusionsIn this study, we found that direct COVID-19 death counts in the US in 2020 substantially underestimated total excess mortality attributable to COVID-19. Racial and socioeconomic inequities in COVID-19 mortality also increased when excess deaths not assigned to COVID-19 were considered. Our results highlight the importance of considering health equity in the policy response to the pandemic.

Andrew Stokes and co-workers report a county-level analysis of excess deaths owing to COVID-19 in the United States.  相似文献   

14.
Aim  To test how well species distributions and abundance can be predicted following invasion and climate change when using only species distribution and abundance data to estimate parameters.
Location  Models were developed for the species' native range in the Americas and applied to Australia.
Methods  We developed a predictive model for an invasive neotropical shrub ( Parkinsonia aculeata) using a popular ecophysiological bioclimatic modelling technique (CLIMEX) fitted against distribution and abundance data in the Americas. The effect of uncertainty in model parameter estimates on predictions in Australia was tested. Alternative data sources were used when model predictions were sensitive to uncertainty in parameter estimates. The resulting best-fit model was run under two climate change scenarios.
Results  Of the 19 parameters used, 9 could not be fitted using data from the native range. However, only parameters that lowered temperature or increased moisture requirements for growth noticeably altered the model prediction in Australia. Differences in predictions were dramatic, and reflect climates in Australia that were not represented in the Americas (novel climates). However, these poorly fitted parameters could be fitted post hoc using alternative data sources prior to predicting responses to climate change.
Conclusions  Novel climates prevented the development of a predictive model which relied only on native-range distribution and abundance data because certain parameters could not be fitted. In fact, predictions were more sensitive to parameter uncertainty than to climate change scenarios. Where uncertainty in parameter estimates affected predictions, it could be addressed through the inclusion of alternative data sources. However, this may not always be possible, for example in the absence of post-invasion data.  相似文献   

15.
The ongoing pandemic of coronavirus disease 2019(COVID-19)caused by a novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2,also named as 2019-nCoV or HCoV-19)poses an unprecedented threat to public health(Zhu et al.,2020;Wang et al.,2020;Jiang et al.,2020).The novel HCoV-19 virus has rapidly spread into multiple countries across the world since it was first reported in December 2019.The World Health Organization(WHO)declared COVID-19 as a pandemic on 11th March 2020.As of 4th July,over 10 million confirmed COVID-19 cases have been reported in over 200 countries/regions with more than 0.5 million deaths,including 85,287 documented cases and 4,648 deaths in China(WHO,2020a).  相似文献   

16.
Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the usefulness of the official reported positive COVID-19 case counts. We introduce four complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in the US as well as Puerto Rico and the District of Columbia, using a combination of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spatially structured epidemic model. Instead of relying on the estimate from a single data source or method that may be biased, we provide multiple estimates, each relying on different assumptions and data sources. Across our four approaches emerges the consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million, with possibly as many as 7.6 million cases, up to 25 times greater than the cumulative confirmed cases of about 311,000. Extending our methods to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million positive test counts. The proposed combination of approaches may prove useful in assessing the burden of COVID-19 during resurgences in the US and other countries with comparable surveillance systems.  相似文献   

17.
BackgroundThe Coronavirus Disease 2019 (COVID-19) pandemic has had wide-reaching direct and indirect impacts on population health. In low- and middle-income countries, these impacts can halt progress toward reducing maternal and child mortality. This study estimates changes in health services utilization during the pandemic and the associated consequences for maternal, neonatal, and child mortality.Methods and findingsData on service utilization from January 2018 to June 2021 were extracted from health management information systems of 18 low- and lower-middle-income countries (Afghanistan, Bangladesh, Cameroon, Democratic Republic of the Congo (DRC), Ethiopia, Ghana, Guinea, Haiti, Kenya, Liberia, Madagascar, Malawi, Mali, Nigeria, Senegal, Sierra Leone, Somalia, and Uganda). An interrupted time-series design was used to estimate the percent change in the volumes of outpatient consultations and maternal and child health services delivered during the pandemic compared to projected volumes based on prepandemic trends. The Lives Saved Tool mathematical model was used to project the impact of the service utilization disruptions on child and maternal mortality. In addition, the estimated monthly disruptions were also correlated to the monthly number of COVID-19 deaths officially reported, time since the start of the pandemic, and relative severity of mobility restrictions. Across the 18 countries, we estimate an average decline in OPD volume of 13.1% and average declines of 2.6% to 4.6% for maternal and child services. We projected that decreases in essential health service utilization between March 2020 and June 2021 were associated with 113,962 excess deaths (110,686 children under 5, and 3,276 mothers), representing 3.6% and 1.5% increases in child and maternal mortality, respectively. This excess mortality is associated with the decline in utilization of the essential health services included in the analysis, but the utilization shortfalls vary substantially between countries, health services, and over time. The largest disruptions, associated with 27.5% of the excess deaths, occurred during the second quarter of 2020, regardless of whether countries reported the highest rate of COVID-19-related mortality during the same months. There is a significant relationship between the magnitude of service disruptions and the stringency of mobility restrictions. The study is limited by the extent to which administrative data, which varies in quality across countries, can accurately capture the changes in service coverage in the population.ConclusionsDeclines in healthcare utilization during the COVID-19 pandemic amplified the pandemic’s harmful impacts on health outcomes and threaten to reverse gains in reducing maternal and child mortality. As efforts and resource allocation toward prevention and treatment of COVID-19 continue, essential health services must be maintained, particularly in low- and middle-income countries.

Tashrik Ahmed and co-workers study health-care use and maternal and child health outcomes across low- and lower-middle-income countries during the COVID-19 pandemic.  相似文献   

18.
The ongoing COVID-19 pandemic and its unprecedented global societal and economic disruptive impact highlight the urgent need for safe and effective vaccines. Taking substantial advantages of versatility and rapid development, two m RNA vaccines against COVID-19 have completed late-stage clinical assessment at an unprecedented speed and reported positive results. In this review, we outline keynotes in m RNA vaccine development, discuss recently published data on COVID-19 m RNA vaccine candidates, focusing on those in clinical trials and analyze future potential challenges.  相似文献   

19.
The enormous societal impact of the ongoing COVID-19 pandemic has been particularly harsh for some social groups, such as the elderly. Recently, it has been suggested that senescent cells could play a central role in pathogenesis by exacerbating the pro-inflammatory immune response against SARS-CoV-2. Therefore, the selective clearance of senescent cells by senolytic drugs may be useful as a therapy to ameliorate the symptoms of COVID-19 in some cases. Using the established COVID-19 murine model K18-hACE2, we demonstrated that a combination of the senolytics dasatinib and quercetin (D/Q) significantly reduced SARS-CoV-2-related mortality, delayed its onset, and reduced the number of other clinical symptoms. The increase in senescent markers that we detected in the lungs in response to SARS-CoV-2 may be related to the post-COVID-19 sequelae described to date. These results place senescent cells as central targets for the treatment of COVID-19, and make D/Q a new and promising therapeutic tool.  相似文献   

20.

The COVID-19 pandemic has kept the world in suspense for the past year. In most federal countries such as Germany, locally varying conditions demand for state- or county-level decisions to adapt to the disease dynamics. However, this requires a deep understanding of the mesoscale outbreak dynamics between microscale agent models and macroscale global models. Here, we use a reparameterized SIQRD network model that accounts for local political decisions to predict the spatiotemporal evolution of the pandemic in Germany at county resolution. Our optimized model reproduces state-wise cumulative infections and deaths as reported by the Robert Koch Institute and predicts the development for individual counties at convincing accuracy during both waves in spring and fall of 2020. We demonstrate the dominating effect of local infection seeds and identify effective measures to attenuate the rapid spread. Our model has great potential to support decision makers on a state and community politics level to individually strategize their best way forward during the months to come.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号