首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To study important epitopes on glycoprotein E2 of Sindbis virus, eight variants selected to be singly or multiply resistant to six neutralizing monoclonal antibodies reactive against E2, as well as four revertants which had regained sensitivity to neutralization, were sequenced throughout the E2 region. To study antigenic determinants in glycoprotein E1, four variants selected for resistance to a neutralizing monoclonal antibody reactive with E1 were sequenced throughout the E2 and E1 regions. All of the salient changes in E2 occurred within a relatively small region between amino acids 181 and 216, a domain that encompasses a glycosylation site at residue 196 and that is rich in charged amino acids. Almost all variants had a change in charge, suggesting that the charged nature of this domain is important for interaction with antibodies. Variants independently isolated for resistance to the same antibody were usually altered in the same amino acid, and reversion to sensitivity occurred at the sites of the original mutations, but did not always restore the parental amino acid. The characteristics of this region suggest that this domain is found on the surface of E2 and constitutes a prominent antigenic domain that interacts directly with neutralizing antibodies. Previous studies have shown that this domain is also important for penetration of cells and for virulence of the virus. Resistance to the single E1-specific neutralizing monoclonal antibody resulted from changes of Gly-132 of E1 to either Arg or Glu. Analogous to the findings with E2, these changes result in a change in charge and are found near a glycosylation site at residue 139. This domain of E1 may therefore be found near the 181 to 216 domain of E2 on the surface of the E1-E2 heterodimer; together, they could form a domain important in virus penetration and neutralization.  相似文献   

3.
《Cell host & microbe》2022,30(2):154-162.e5
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

4.
In 2012,a novel coronavirus,initially named as human coronavirus EMC(HCoV-EMC) but recently renamed as Middle East respiratory syndrome human coronavirus(MERS-CoV),was identified in patients who suffered severe acute respiratory infection and subsequent renal failure that resulted in death.Ongoing epidemiological investigations together with retrospective studies have found 61 laboratory-confirmed cases of infection with this novel coronavirus,including 34 deaths to date.This novel coronavirus is culturable and two complete genome sequences are now available.Furthermore,molecular detection and indirect immunofluorescence assay have been developed.The present paper summarises the limited recent advances of this novel human coronavirus,including its discovery,genomic characterisation and detection.  相似文献   

5.
Since the discovery of microRNA (miRNA)-guided processing, a new type of RNA silencing, the possibility that such a mechanism could play a role in virus defense has been proposed. In this work, we have analyzed whether Plum pox virus (PPV) chimeras bearing miRNA target sequences (miR171, miR167, and miR159), which have been reported to be functional in Arabidopsis, were affected by miRNA function in three different host plants. Some of these PPV chimeras had clearly impaired infectivity compared with those carrying nonfunctional miRNA target sequences. The behaviors of PPV chimeras were similar but not identical in all the plants tested, and the deleterious effect on virus infectivity depended on the miRNA sequence cloned and on the site of insertion in the viral genome. The effect of the miRNA target sequence was drastically alleviated in transgenic plants expressing the silencing suppressor P1/HCPro. Furthermore, we show that virus chimeras readily escape RNA silencing interference through mutations within the miRNA target sequence, which mainly affected nucleotides matching the 5'-terminal region of the miRNA.  相似文献   

6.
Deficiencies in MHC class I antigen presentation are a common feature of tumors and allows escape from cytotoxic T lymphocyte (CTL)-mediated killing. It is crucial to take this capacity of tumors into account for the development of T-cell-based immunotherapy, as it may strongly impair their effectiveness. A variety of escape mechanisms has been described thus far, but progress in counteracting them is poor. Here we review a novel strategy to target malignancies with defects in the antigenic processing machinery (APM). The concept is based on a unique category of CD8+ T-cell epitopes that is associated with impaired peptide processing, which we named TEIPP. We characterized this alternative peptide repertoire emerging in MHC-I on tumors lacking classical antigen processing due to defects in the peptide transporter TAP (transporter associated with peptide processing). These TEIPPs exemplify interesting parallels with the folktale figure Cinderella: they are oppressed and neglected by a stepmother (like functional TAP prevents TEIPP presentation), until the suppression is released and Cinderella/TEIPP achieves unexpected recognition. TEIPP-specific CTLs and their cognate peptide-epitopes provide a new strategy to counteract immune evasion by APM defects and bear potential to targeting escape variants observed in a wide range of cancers.  相似文献   

7.
8.
A monoclonal antibody to human insulin receptor   总被引:1,自引:0,他引:1  
A murine hybridoma secreting antibody against human insulin receptor was produced by fusing FO myeloma cells with spleen and lymph node cells from a mouse that had been immunized with insulin receptor purified from human placenta. The secreted antibody was an IgG1 (κ), designated αIR-1. Like the previously described rabbit polyclonal antibody, αIR-1 did not inhibit insulin binding. It specifically immunoprecipitated 125I-insulin-receptor complexes as well as unoccupied receptor previously labeled directly with lactoperoxidase. Thus, αIR-1 interacts with the receptor at a site distinct from the insulin binding site. Unlike previously described anti-insulin receptor antibodies, αIR-1 exhibits strong tissue and species specificity.  相似文献   

9.
Infection with oncogenic human papillomaviruses (HPVs), typified by HPV type 16 (HPV16), is a necessary cause of cervical cancer. Prophylactic vaccination with HPV16 L1 virus-like particles (VLPs) provides immunity. HPV16 VLPs activate dendritic cells and a potent neutralizing immunoglobulin G (IgG) response, yet many cervical cancer patients fail to generate detectable VLP-specific IgG. Therefore, we examined the role of the innate recognition of HPV16 L1 in VLP-induced immune responses and its evasion during carcinogenesis. Nonconservative mutations within HPV16 L1 have been described in isolates from cervical cancer and its precursor, high-grade cervical intraepithelial neoplasia (CIN). We determined the effect of mutations in L1 upon in vitro self-assembly into VLPs and their influence upon the induction of innate and adaptive immune responses in mice. Several nonconservative mutations in HPV16 L1 isolated from high-grade CIN or cervical carcinoma prevent self-assembly of L1 VLPs. Intact VLPs, but not assembly-defective L1, activate dendritic cells to produce proinflammatory factors, such as alpha interferon, that play a critical role in inducing adaptive immunity. Indeed, effective induction of L1-specific IgG1 and IgG2a was dependent upon intact VLP structure. Dendritic cell activation and production of virus-specific neutralizing IgG by VLPs requires MyD88-dependent signaling, although the L1 structure that initiates MyD88-mediated signaling is distinct from the neutralizing epitopes. We conclude that innate recognition of the intact L1 VLP structure via MyD88 is critical in the induction of high-titer neutralizing IgG. Tumor progression is associated with genetic instability and L1 mutants. Selection for assembly-deficient L1 mutations suggests the evasion of MyD88-dependent immune control during cervical carcinogenesis.  相似文献   

10.
11.
Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A   总被引:10,自引:0,他引:10  
Severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid protein (NP) of SARS-CoV (SARS_NP) functions in enveloping the entire genomic RNA and interacts with viron structural proteins, thus playing important roles in the process of virus particle assembly and release. Protein-protein interaction analysis using bioinformatics tools indicated that SARS_NP may bind to human cyclophilin A (hCypA), and surface plasmon resonance (SPR) technology revealed this binding with the equilibrium dissociation constant ranging from 6 to 160nM. The probable binding sites of these two proteins were detected by modeling the three-dimensional structure of the SARS_NP-hCypA complex, from which the important interaction residue pairs between the proteins were deduced. Mutagenesis experiments were carried out for validating the binding model, whose correctness was assessed by the observed effects on the binding affinities between the proteins. The reliability of the binding sites derived by the molecular modeling was confirmed by the fact that the computationally predicted values of the relative free energies of the binding for SARS_NP (or hCypA) mutants to the wild-type hCypA (or SARS_NP) are in good agreement with the data determined by SPR. Such presently observed SARS_NP-hCypA interaction model might provide a new hint for facilitating the understanding of another possible SARS-CoV infection pathway against human cell.  相似文献   

12.
Mutation within virus-derived CD8 T-cell epitopes can effectively abrogate cytotoxic T-lymphocyte (CTL) recognition and impede virus clearance in infected hosts. These so-called “CTL escape variant viruses” are commonly selected during persistent infections and are associated with rapid disease progression and increased disease severity. Herein, we tested whether antiviral antibody-mediated suppression of virus replication and subsequent virus clearance were necessary for preventing CTL escape in coronavirus-infected mice. We found that compared to wild-type mice, B-cell-deficient mice did not efficiently clear infectious virus, uniformly developed clinical disease, and harbored CTL escape variant viruses. These data directly demonstrate a critical role for antiviral antibody in protecting from the selective outgrowth of CTL escape variant viruses.  相似文献   

13.
Complement-dependent destruction of invading micro-organisms is a crucial first-line defense against infection, yet both African and American trypanosomes are able to resist attack by complement. African trypanosomes resist non-specific complement attack by virtue of a thick glycoprotein surface coat, and the host range of certain African trypanosomes is believed to be defined by their susceptibility to a subclass of human high density lipoprotein (HDL) and/or a high molecular weight protein complex present in human serum. In the first part of this review, Stephen Tomlinson and Jayne Raper look at the properties and mechanisms of action of these trypanolytic factors on African trypanosomes, and discuss briefly the possible mechanisms whereby these human pathogens resist lysis by human serum. The mechanisms that enable the American trypanosome Trypanosoma cruzi to resist complement attack are reviewed in the second part of this article.  相似文献   

14.
Monoclonal antibody to rat brain actin was easily produced using HVJ (Sendai Virus) M protein to enhance the antigenicity of the actin. This monoclonal antibody was determined to be IgM with a kappa light chain. By immunoblot analysis the antibody was also shown to react with rat brain actin but not with HVJ M protein on nitrocellulose sheets. Utilizing the antibody, neuronal cytoplasm in the cerebral cortex, the anterior and posterior horns in the spinal cord, the spinal ganglion and astrocytes showed positive immunohistochemical staining by light microscopy. However, Purkinje cells showed variable staining, some staining intensely, while others were negative. All of neurons in specific anatomical locations showed always positive staining but variable intensities. Vascular walls were stained only faintly. By electron microscopy, neuronal cytoplasm showed diffuse positive staining. Other areas showed a positive reaction, including dendrites, the postsynaptic densities, and a few capillary endothelial cells and arterial smooth muscle cells. The results suggest that the HVJ M protein was effective for producing monoclonal antibody to brain actin, and that the antibody could be utilized for the immunohistochemical study of neuronal elements in both normal and pathological conditions.  相似文献   

15.
Heterosubtypic immunity (HSI) is defined as cross-protection to infection with an influenza A virus serotype other than the one used for primary infection. Although HSI has been thought to be mediated by serotype cross-reactive cytotoxic T lymphocytes (CTL) that recognize conserved epitopes of structural proteins, recent studies suggest that antibodies (Abs) may make a significant contribution. In this study, we provide further evidence for the role of Abs in HSI using transgenic mice lacking terminal deoxyribonucleotidyltransferase (TdT), which adds N nucleotides to V-D and D-J junctions of the complementary determining region 3 (CDR3) (TdT(-/-)) and mice with altered Ab repertoires due to replacement of the complete locus of heavy chain diversity segments (D(H)) with an altered D(H) segment (namely, Delta D-iD). Both types of mice failed to generate complete HSI, although they were able to mount protective immunity to a homologous challenge. Lower levels of virus-specific antibodies along with more severely impaired HSI were observed in TdT(-/-) mice compared to those in Delta D-iD mice, while CTL activity remained unchanged in both types of mice. These findings indicate that a properly diversified antibody repertoire is required for HSI and that N addition by TdT is a more effective mechanism in the induction of a properly diversified antibody repertoire and, therefore, complete HSI. The results suggest that the diversity of the antibody repertoire as determined by the composition of the D region of HCDR3 and by N addition are among the mechanisms selected for in evolution to create a favorable environment to resolve infections with mutated viruses.  相似文献   

16.
Summary Monoclonal antibody to rat brain actin was easily produced using HVJ (Sendai Virus) M protein to enhance the antigenicity of the actin. This monoclonal antibody was determined to be IgM with a kappa light chain. By immunoblot analysis the antibody was also shown to react with rat brain actin but not with HVJ M protein on nitrocellulose sheets. Utilizing the antibody, neuronal cytoplasm in the cerebral cortex, the anterior and posterior horns in the spinal cord, the spinal ganglion and astrocytes showed positive immunohistochemical staining by light microscopy. However, Purkinje cells showed variable staining, some staining intensely, while others were negative. All of neurons in specific anatomical locations showed always positive staining but variable intensities. Vascular walls were stained only faintly. By electron microscopy, neuronal cytoplasm showed diffuse positive staining. Other areas showed a positive reaction, including dendrites, the postsynaptic densities, and a few capillary endothelial cells and arterial smooth muscle cells. The results suggest that the HVJ M protein was effective for producing monoclonal antibody to brain actin, and that the antibody could be utilized for the immunohistochemical study of neuronal elements in both normal and pathological conditions.  相似文献   

17.
Acquired immunity to murine Chlamydia trachomatis genital tract reinfection has long been assumed to be solely dependent on cell-mediated immunity. However, in this study, we identify a previously unrecognized protective role for Ab. Immunity develops in Ab-deficient mice following the resolution of primary chlamydial genital infection. Subsequent depletion of CD4+ T cells, but not CD8+ T cells, in those immune Ab-deficient mice before secondary infectious challenge, resulted in an infection that did not resolve. Passive immunization with immune (convalescent) serum conferred a marked level of protective immunity to reinfection, which was characterized by a striking decrease in bacterial shedding, from >100,000 inclusion forming units to fewer than 10 inclusion forming units, and a shortened duration of infection. Furthermore, mAbs to the chlamydial major outer membrane protein and LPS conferred significant levels of immunity to reinfection and reduced chlamydial shedding by >100-fold. Anti-heat shock protein 60 mAb had no protective effect. In contrast to the marked protective efficacy of immune serum on reinfection, the course of primary infection was essentially unaltered by the passive transfer of immune serum. Our results convincingly demonstrate that Abs contribute importantly to immunity to chlamydial genital tract reinfection, and that Ab-mediated protection is highly dependent on CD4+ T cell-mediated adaptive changes that occur in the local genital tract tissues during primary infection. These results impact our understanding of immunity to chlamydial genital infection and may provide important insight into vaccine development.  相似文献   

18.
金黄色葡萄球菌(Staphylococcus aureus)是一种能引起人和动物发生多种疾病的革兰阳性菌(Gram positive bacterium),并且金黄色葡萄球菌免疫逃逸(immune escap)是导致宿主持续性感染以及诱导细胞死亡的主要原因。现就金黄色葡萄球菌阻止自噬溶酶体(lysosome)的形成、阻碍中性粒细胞(neutrophils)的募集、吞噬作用及抑制巨噬细胞(macrophage)的免疫功能等作一概述。  相似文献   

19.
《Cell host & microbe》2022,30(1):83-96.e4
  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image
  相似文献   

20.
《Biophysical journal》2021,120(24):5592-5618
The ongoing COVID-19 pandemic is a global public health emergency requiring urgent development of efficacious vaccines. While concentrated research efforts have focused primarily on antibody-based vaccines that neutralize SARS-CoV-2, and several first-generation vaccines have either been approved or received emergency use authorization, it is forecasted that COVID-19 will become an endemic disease requiring updated second-generation vaccines. The SARS-CoV-2 surface spike (S) glycoprotein represents a prime target for vaccine development because antibodies that block viral attachment and entry, i.e., neutralizing antibodies, bind almost exclusively to the receptor-binding domain. Here, we develop computational models for a large subset of S proteins associated with SARS-CoV-2, implemented through coarse-grained elastic network models and normal mode analysis. We then analyze local protein domain dynamics of the S protein systems and their thermal stability to characterize structural and dynamical variability among them. These results are compared against existing experimental data and used to elucidate the impact and mechanisms of SARS-CoV-2 S protein mutations and their associated antibody binding behavior. We construct a SARS-CoV-2 antigenic map and offer predictions about the neutralization capabilities of antibody and S mutant combinations based on protein dynamic signatures. We then compare SARS-CoV-2 S protein dynamics to SARS-CoV and MERS-CoV S proteins to investigate differing antibody binding and cellular fusion mechanisms that may explain the high transmissibility of SARS-CoV-2. The outbreaks associated with SARS-CoV, MERS-CoV, and SARS-CoV-2 over the last two decades suggest that the threat presented by coronaviruses is ever-changing and long term. Our results provide insights into the dynamics-driven mechanisms of immunogenicity associated with coronavirus S proteins and present a new, to our knowledge, approach to characterize and screen potential mutant candidates for immunogen design, as well as to characterize emerging natural variants that may escape vaccine-induced antibody responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号