首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Coagulation factors II, V, VII, VIII, IX and X are produced by hepatocytes. So factors VIII and IX deficiencies, which result in hemophilia A and B, have the potential to respond to cellular re- place-ment therapy. Embryonic stem (ES) cells provide a unique source for therapeutic applications. Here, E14 mouse ES cells have been induced into hepatocytes in vitro. Morphology revealed that ES-derived hepatic-like cells were round or polyhedral shaped with distinct boundary of individual cells, and some arranged in trabeculae. These cells expressed endodermal- or liver-specific mRNA ——transthyretin (TTR), α1-anti-trypsin (AAT), α-fetoprotein (AFP), albumin (ALB), glucose-6- phoshpatase (G6P) and tyrosine aminotransferase (TAT). Approximately (85.1±0.5)% of the ES-de- rived cells was stained positive green with ICG uptake. These cells were also stained magenta as a result of PAS reaction. In this paper, expression of coagulation factors VIII and IX mRNA in the ES-derived cells is documented. Therefore, ES cells might be developed as substitute donor cells for the therapy of coagulation factor deficiencies.  相似文献   

4.
Coagulation factors II, V, VII, VIII, IX and X are produced by hepatocytes. So factors VIII and IX deficiencies, which result in hemophilia A and B, have the potential to respond to cellular replacement therapy. Embryonic stem (ES) cells provide a unique source for therapeutic applications. Here, E14 mouse ES cells have been induced into hepatocytes in vitro. Morphology revealed that ES-derived hepatic-like cells were round or polyhedral shaped with distinct boundary of individual cells, and some arranged in trabeculae. These cells expressed endodermal-or liver-specific mRNA—transthyretin (TTR), α1-anti-trypsin (AAT), α-fetoprotein (AFP), albumin (ALB), glucose-6-phoshpatase (G6P) and tyrosine aminotransferase (TAT). Approximately (85.1±0.5)% of the ES-derived cells was stained positive green with ICG uptake. These cells were also stained magenta as a result of PAS reaction. In this paper, expression of coagulation factors VIII and IX mRNA in the ES-derived cells is documented. Therefore, ES cells might be developed as substitute donor cells for the therapy of coagulation factor deficiencies.  相似文献   

5.
Wnt/β‐catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, β‐catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver‐derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co‐receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex‐induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex‐induced glycogen synthesis of PAS‐positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation. J. Cell. Biochem. 108: 295–303, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
移植细胞的增殖和分化需要微环境支持。作为最重要的微环境成分,肌成纤维细胞在肿瘤的生长过程中发挥着重要作用。该实验Hepa1-6肿瘤细胞上清液在体外激活成纤维细胞分化为肌成纤维细胞,探讨肌成纤维细胞上清对小鼠胚胎肝干细胞(embryonic hepatic stem cells,EHSCs)HP14.5增殖和分化的影响。实验将EHSCs HP14.5分为三组:DMEM培养液处理组(DMEM组)、成纤维细胞上清液处理组(CMFb组)及肌成纤维细胞上清液处理组(CMAFb组)。MTT法绘制三组HP14.5细胞生长曲线图,免疫荧光法及Real-time PCR法检分别测白蛋白(albumin,ALB)、甲胎蛋白(alpha fetoprotein,AFP)、细胞角蛋白18(cytokeratin 18,CK18)的蛋白及mRNA表达情况,PAS染色法检测糖原合成状况。MTT法检测显示,CMAFb组胚胎肝干细胞增殖明显速度较其他两组快。免疫荧光染色及Real-time PCR结果显示,HP14.5培养5 d后,CMAFb组ALB和CK18的蛋白及mRNA表达水平以及糖原合成水平显著高于CMFb组及DMEM组,而AFP蛋白和mRNA表达水平明显降低。该实验表明,Hepa1-6激活的成纤维细胞能促进胚胎干肝细胞的增殖以及分化为有功能的成熟肝细胞。  相似文献   

8.
Cell sources of liver development   总被引:3,自引:0,他引:3  
The work is devoted to consequent expression of different cell types' protein markers such as vimentin, desmin, cytokeratins 7, 18, 19, stem cell markers CD34 and Bcl-2 at early stages of human prenatal development. Desmin was revealed in sinusoidal liver cells on 3.5-12 weeks of gestation, in mesenchymal cells of ventral mesentery and hepatoblasts on the 4-7 accordingly. During hepatic period of blood formation such desmin positive sinusoidal cells were found to be located close to blood cells. So called "cholangio-" cytokeratins 7 and 19 showed different expression, the first one was found only in cholangiocytes, while cytokeratin 19 existed in hepatoblasts as well until week 15-16 of prenatal development. Mesenchymal cells of ventral mesentery are positive for cytokeratins 18 and 19 even brighter than hepatoblasts in the 4-7 weeks of gestation. Bcl-2 expression was seen in the same periods in most sinusoidal and mesenchymal cells of ventral mesentery. CD34 positive cells are strongly depicted in liver sinusoids from 4th until 9th weeks of gestation, but probably they are not a source of hepatocytes' development in embryonic ontogenesis. Ventral mesentery mesenchyme was negative for this very marker. These results let us suppose that hepatocytes and cholangiocytes may develop from quite different embryonic sources: cholangyocytes grow exceptionally from duodenum epithelial cells, while there is a strong possibility that hepatoblasts formation occurs with participation of mesenchymal cells.  相似文献   

9.
Characterization of cells in the developing human liver   总被引:12,自引:0,他引:12  
Human hepatic progenitor cells (HPCs) have been shown to co-express the hematopoietic stem cell (HSC) markers, CD117 and CD34. These cells differentiate not only into hepatocytes and cholangiocytes but also into pancreatic ductal and acinar cells under certain conditions. The fetal liver (FL) is rich in precursor/stem cells; however, little is known about (i) the markers expressed by liver cells during fetal development and (ii) whether an equivalent to the adult liver stem-like progenitors exists in the FL. Here, (i) FL tissue obtained from human 5-18-week-old fetuses were evaluated by means of flow cytometry, immunocyto-, and histochemistry for the emergence of cells expressing and co-expressing known hematopoietic, hepatic, and pancreatic cell markers, and (ii) isolated putative HPCs were phenotypically and molecularly characterized. We report that (i) red blood and endothelial cell precursors were most abundant in early gestation. Cells expressing HSC and pancreatic markers were found in the first trimester, while cells expressing hepatic markers appeared in the second trimester. Very few committed cells were present in FLs obtained early in the first trimester. In addition, cells expressing pancreatic markers co-expressed the HSC marker CD117. (ii) Isolated CD117+/CD34+/CD90- cells in vitro expressed both the genes and proteins for the hepatic markers such as albumin, alpha feto protein (AFP), alpha1-antitrypsin, and cytokeratin 19 (CK19). Our study suggests that hepatoblast and ductal plate/bile duct development mainly occurs during the second trimester. FLs in gestation weeks 5-9 had the highest numbers of precursor cells and the least committed cells. Cells that differentiate into Alb+ or CK19+ can be isolated from early FLs and may be appropriate progenitors for establishing novel systems to investigate basic mechanisms for cell therapy.  相似文献   

10.
11.
摘要 目的:研究开发一种简易、快速在体外使多能诱导干细胞(induced pluripotent stem cells,iPSCs)定向分化为功能性肝样细胞的培养方法。方法:根据正常肝细胞在体内的发育规律,设计简化诱导方法使iPS细胞定向分化为内胚层细胞,应用qPCR和流式细胞术鉴定其纯度后进一步诱导分化为肝样细胞,并通过qPCR、ELISA、免疫荧光等技术鉴定肝细胞的性状和功能。结果:iPS细胞诱导7天后, OCT4和NANOG的表达水平显著下降,内胚层细胞相关基因CXCR4、FOXA2和HNF4A表达水平明显升高。内胚层细胞继续诱导培养15天后,肝细胞特异性标志基因ALB、TDO2、RBP4、G6PC和肝药酶基因CYPs等显著上调,同时产生高水平的白蛋白和尿素;PAS糖原染色为阳性,能主动摄取和释放吲哚菁绿,证实诱导成的肝样细胞具备正常肝细胞的部分功能。结论:该诱导方案能够在体外使iPS细胞遵循正常肝脏发育通路简易、高效地分化为功能性肝细胞。本研究为大量获得iPS来源的肝细胞及其在细胞疗法和药筛模型中的运用提供了可能性。  相似文献   

12.
The generation of human induced pluripotent stem cells (hiPSCs) from an individual patient provides a unique tool for disease modeling, drug discovery, and cell replacement therapies. Patient-specific pluripotent stem cells can be expanded in vitro and are thus suitable for genetic manipulations. To date, several genetic liver disorders have been modeled using patient-specific hiPSCs. Here, we present the generation of corrected hepatocyte-like cells (HLCs) from hiPSCs of a familial hypercholesterolemia (FH) patient with a homozygous mutation in the low-density lipoprotein receptor (LDLR) gene. We generated hiPSCs from a patient with FH with the mutated gene encoding a truncated non-functional receptor. In order to deliver normal LDLR to the defective cells, we used a plasmid vector carrying the normal receptor ORF to genetically transform the hiPSCs. The transformed cells were expanded and directed toward HLCs. Undifferentiated defective hiPSCs and HLCs differentiated from the defective hiPSCs did not have the ability to uptake labeled low-density lipoprotein (LDL) particles. The differentiated transformed hiPSCs showed LDL-uptake ability and the correction of disease phenotype as well as expressions of hepatocyte-specific markers. The functionality of differentiated cells was also confirmed by indo-cyanine green (ICG) uptake assay, PAS staining, inducible cyp450 activity, and oil red staining. These data suggest that hiPSC technology can be used for generation of disease-corrected, patient-specific HLCs with potential value for disease modeling and drug discovery as well as cell therapy applications in future.  相似文献   

13.
We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.  相似文献   

14.
The expression of the liver cell markers, vimentin, desmin, cytokeratins 7, 18, 19, and stem cell markers CD34 and Bcl-2 in the early stages of the human prenatal development was studied. Desmin was revealed in sinusoidal liver cells between 3.5 and 12 weeks of gestation; in mesenchymal cells of ventral mesentery and hepatoblasts it was detected at the 4–7th weeks of gestation. During the hepatic period of hemopoiesis, desmin-positive sinusoidal cells were located close to blood cells. So-called “cholangio-” cytokeratins 7 and 19 displayed different expression patterns. Cytokeratin 7 was found only in cholangiocytes, and cytokeratin 19 in hepatoblasts until 15–16 weeks of prenatal development. Mesenchymal cells of the ventral mesentery expressed cytokeratins 18 and 19 more than hepatoblasts at the 4–7th weeks of gestation. Bcl-2 was seen in the same period in most sinusoidal and mesenchymal cells of the ventral mesentery. CD34 positive cells were detected in liver sinusoids between the 4th and 9th weeks of gestation but probably they are not progenitors of hepatocytes during embryonic development. Ventral mesentery mesenchyma was negative for CD34. These results let us hypothesize that hepatocytes and cholangiocytes may arise from different embryonic sources: cholangyocytes derive only from duodenal epithelial cells, while hepatoblasts develop most likely with the participation of mesenchymal cells.  相似文献   

15.
Shin KS  Lee HJ  Jung J  Cha DH  Kim GJ 《Cell proliferation》2010,43(5):435-444
Objectives: Translational research using adult stem cells derived from various tissues has been highlighted in cell‐based therapy. However, there are many limitations to using conventional culture systems of adult stem cells for clinically applicability, including limited combinations of cytokines and use of nutrients derived from animals. Here, we have investigated the effects of placental extract (PE) for culture of placenta‐derived stem cells (PDSCs) as well as their potential for hepatogenic differentiation. Materials and methods: Placental extract, extracted using water‐soluble methods, was used as a supplement for culture of PDSCs. Cell viability was determined using the MTT assay, and cytokine assay was performed using Luminex assay kit. Gene expression, indocyanine green (ICG) up‐take, PAS (Periodic Acid‐Schiff) staining and urea production were also analysed. Results: The placental extract contained several types of cytokine and chemokine essential for maintenance and differentiation of stem cells. Expression of stemness markers in PDSCs cultured with PE is no different from that of PDSCs cultured with foetal bovine serum (FBS). After hepatogenic differentiation, expression patterns for hepatocyte‐specific markers in PDSCs cultured with PE were consistent and potential for hepatogenic differentiation of PDSCs cultured with PE was similar to that of PDSCs cultured with FBS, as shown by PAS staining and urea production assays. Conclusions: Our findings revealed that placental extract could be used as a new component for culture of adult stem cells, as well as for development of human‐based medium, in translational research for regenerative medicine.  相似文献   

16.
17.
18.
Bronchoalveolar lavage (BAL) is a useful diagnostic tool in interstitial lunge diseases (ILD). However, differential cell counts are often non specific and immunocytochemistry is time consuming. Staining of glyoproteins by periodic acid Schiff (PAS) reaction may help in discriminating different forms of ILD. In addition, PAS staining is easy to perform. BAL cells from patients with idiopathic pulmonary fibrosis (IPF) (n = 8), sarcoidosis (n = 9), and extrinsic allergic alveolitis (EAA) (n = 2) were investigated. Cytospins from BAL cells were made and cells were stained using Hemacolor quick stain and PAS staining. Lymphocytic alveolitis was found in sarcoidosis and EAA whereas in IPF both lymphocytes and neutrophils were increased. PAS positive cells were significantly decreased in EAA compared to IPF and sarcoidosis (25.5% ± 0.7% vs 59.8% ± 25.1% and 64.0% ± 19.7%, respectively) (P < 0.05). No significant correlation between PAS positive cells and inflammatory cells was observed. These results suggest that PAS staining of BAL cells may provide additional information in the differential diagnosis of ILD. Further studies ware warranted to evaluate PAS staining in larger numbers of BAL from patients with ILD.  相似文献   

19.
目的:建立一种简便、经济、高产的同步分离培养肝细胞以及肝星状细胞的方法。方法:在参照国内外方法的基础上加以改良,首先采用肝脏原位胶原酶灌注消化的方法,获得总细胞悬液,经多次低速离心分离肝细胞;再用Nycodenz作为分离介质,通过密度梯度离心法从非实质细胞中得到肝星状细胞。通过台盼蓝染色方法鉴定细胞的活力,用倒置相差显微镜、立体显微镜、CK-18、白蛋白免疫荧光细胞化学染色对培养的肝细胞形态以及功能进行检测。使用Desmin、α-SMA免疫荧光细胞化学对肝星状细胞进行鉴定。结果:成功的在体外同步分离、培养肝细胞及肝星状细胞,肝细胞产率为5-6×107/只小鼠,两只小鼠肝星状细胞产率达1×106个。细胞存活率及纯度均可达90%。肝细胞在培养24h后呈不规则铺路石样形态,此为典型的肝细胞形态,其标志分子CK-18以及白蛋白免疫荧光染色阳性。倒置相差显微镜下可见贴壁后的肝星状细胞呈典型的星形细胞形态,且其标志分子Desmin、α-SMA免疫荧光染色阳性。结论:改良的原位灌注以及分离方法可以同时分离并且培养具有高活性和功能的肝细胞和肝星状细胞。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号