首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent analyses have identified a number of binding partners for E6, including E6AP, ERC55, paxillin, hDlg, p300, interferon regulatory factor 3, hMCM7, Bak, and E6TP1. Notably, association with E6 targets p53, E6TP1, myc, hMCM7, and Bak for degradation. However, the relative importance of the various E6 targets in cellular transformation remains unclear. E6 alone can dominantly immortalize normal human mammary epithelial cells (MECs), permitting an assessment of the importance of various E6 targets in cellular transformation. Studies in this system indicate that E6-induced degradation of p53 and E6 binding to ERC55 or hDlg do not correlate with efficient immortalization. Here, we have examined the role of E6TP1, a Rap GTPase-activating protein, in E6-induced immortalization of MECs. We tested a large set of human papillomavirus type 16 E6 mutants for their ability to bind and target E6TP1 for degradation in vitro and in vivo. We observed a strict correlation between the ability of E6 protein to target E6TP1 for degradation and its ability to immortalize MECs. Recent studies have identified telomerase as a target of E6 protein. Previous analyses of E6 mutants have revealed this trait to closely correlate with MEC immortalization. We examined our entire panel of E6 mutants for rapid induction of telomerase activity and found in general a strong correlation with immortalizing ability. The tight correlation between E6TP1 degradation and MEC immortalization strongly supports a critical role of functional inactivation of E6TP1 in E6-induced cellular immortalization.  相似文献   

2.
3.
The E6 proteins from cervical cancer-associated human papillomavirus (HPV) types such as HPV type 16 (HPV-16) induce proteolysis of the p53 tumor suppressor protein through interaction with E6-AP. We have previously shown that human mammary epithelial cells (MECs) immortalized by HPV-16 E6 display low levels of p53. HPV-16 E6 as well as other cancer-related papillomavirus E6 proteins also binds the cellular protein E6BP (ERC-55). To explore the potential functional significance of these interactions, we created and analyzed a series of E6 mutants for their ability to interact with E6-AP, p53, and E6BP in vitro. While there was a similar pattern of binding among these E6 targets, a subset of mutants differentiated E6-AP binding, p53 binding, and p53 degradation activities. These results demonstrated that E6 binding to E6-AP is not sufficient for binding to p53 and that E6 binding to p53 is not sufficient for inducing p53 degradation. The in vivo activity of these HPV-16 E6 mutants was tested in MECs. In agreement with the in vitro results, most of these p53 degradation-defective E6 mutants were unable to reduce the p53 level in early-passage MECs. Interestingly, several mutants that showed severely reduced ability for interacting with E6-AP, p53, and E6BP in vitro efficiently immortalized MECs. These immortalized cells exhibited low p53 levels at late passage. Furthermore, mutants defective for p53 degradation but able to immortalize MECs were also identified, and the immortal cells retained normal levels of p53 protein. These results imply that multiple functions of HPV-16 E6 contribute to MEC immortalization.  相似文献   

4.
Two activities of human papillomavirus type 16 E6 (HPV16 E6) are proposed to contribute to the efficient immortalization of human epithelial cells: the degradation of p53 protein and the induction of telomerase. However, the requirement for p53 inactivation has been debated. Another E6 target is the hAda3 protein, a p53 coactivator and a component of histone acetyltransferase complexes. We have previously described the role of hAda3 and p53 acetylation in p14ARF-induced human mammary epithelial cell (MEC) senescence (P. Sekaric, V. A. Shamanin, J. Luo, and E. J. Androphy, Oncogene 26:6261-6268, 2007). In this study, we analyzed a set of HPV16 E6 mutants for the ability to induce hAda3 degradation. E6 mutants that degrade hAda3 but not p53 could abrogate p14ARF-induced growth arrest despite the presence of normal levels of p53 and efficiently immortalized MECs. However, two E6 mutants that previously were reported to immortalize MECs with low efficiency were found to be defective for both p53 and hAda3 degradation. We found that these immortal MECs select for reduced p53 protein levels through a proteasome-dependent mechanism. The findings strongly imply that the inactivation of the p14ARF-p53 pathway, either by the E6-mediated degradation of p53 or hAda3 or by cellular adaptation, is required for MEC immortalization.  相似文献   

5.
We have recently identified E6TP1 (E6-targeted protein 1) as a novel high-risk human papillomavirus type 16 (HPV16) E6-binding protein. Importantly, mutational analysis of E6 revealed a strong correlation between the transforming activity and its abilities to bind and target E6TP1 for ubiquitin-mediated degradation. As a region within E6TP1 has high homology with GAP domains of known and putative Rap GTPase-activating proteins (GAPs), these results raised the possibility that HPV E6 may alter the Rap small-G-protein signaling pathway. Using two different approaches, we now demonstrate that human E6TP1 exhibits GAP activity for Rap1 and Rap2, confirming recent findings that a closely related rat homologue exhibits Rap-specific GAP activity. Using mutational analysis, we localize the GAP activity to residues 240 to 945 of E6TP1. Significantly, we demonstrate that coexpression of HPV16 E6, by promoting the degradation of E6TP1, enhances the GTP loading of Rap. These results support a role of Rap small-G-protein pathway in E6-mediated oncogenesis.  相似文献   

6.
PKN binds and phosphorylates human papillomavirus E6 oncoprotein   总被引:6,自引:0,他引:6  
The high risk human papillomaviruses (HPVs) are associated with carcinomas of cervix and other genital tumors. Previous studies have identified two viral oncoproteins E6 and E7, which are expressed in the majority of HPV-associated carcinomas. The ability of high risk HPV E6 protein to immortalize human mammary epithelial cells has provided a single gene model to study the mechanisms of E6-induced oncogenic transformation. In recent years, it has become clear that in addition to E6-induced degradation of p53 tumor suppressor protein, other targets of E6 are required for mammary epithelial cells immortalization. Using the yeast two-hybrid system, we have identified a novel interaction of HPV16 E6 with protein kinase PKN, a fatty acid- and Rho small G protein-activated serine/threonine kinase with a catalytic domain highly homologous to protein kinase C. We demonstrate direct binding of high risk HPV E6 proteins to PKN in wheat-germ lysate in vitro and in 293T cells in vivo. Importantly, E6 proteins of high risk HPVs but not low risk HPVs were able to bind PKN. Furthermore, all the immortalization-competent and many immortalization-non-competent E6 mutants bind PKN. These data suggest that binding to PKN may be required but not sufficient for immortalizing normal mammary epithelial cells. Finally, we show that PKN phosphorylates E6, demonstrating for the first time that HPV E6 is a phosphoprotein. Our finding suggests a novel link between HPV E6 mediated oncogenesis and regulation of a well known phosphorylation cascade.  相似文献   

7.
The viral oncoprotein E6 is an essential factor for cervical cancers induced by "high-risk" mucosal HPV. Among other oncogenic activities, E6 recruits the ubiquitin ligase E6AP to promote the ubiquitination and subsequent proteasomal degradation of p53. E6 is prone to self-association, which long precluded its structural analysis. Here we found that E6 specifically dimerizes through its N-terminal domain and that disruption of the dimer interface strongly increases E6 solubility. This allowed us to raise structural data covering the entire HPV16 E6 protein, including the high-resolution NMR structures of the two zinc-binding domains of E6 and a robust data-driven model structure of the N-terminal domain homodimer. Interestingly, homodimer interface mutations that disrupt E6 self-association also inactivate E6-mediated p53 degradation. These data suggest that E6 needs to self-associate via its N-terminal domain to promote the polyubiquitination of p53 by E6AP.  相似文献   

8.
High risk subtype HPV16 early oncoprotein E6 contributes host cell immortalization and transformation through interacting with a number of cellular factors. ING4 is one member of the inhibitor of growth (ING) family of type II tumor suppressors and it has been shown to be involved in regulating p53 function. However, the effect and mechanism of HPV16 E6 on ING4 function remain elusive. In this study, we report HPV16 E6 combines with ING4 in vivo and in vitro. The ING4 induced p53 acetylation and its combining with p53 were attenuated by HPV16 E6 independent of p53 degradation. The enhancing function of ING4 on p53 mediated apoptosis was diminished when HPV16 E6 existed. These findings reveal that ING4 may be a common target of oncogenic viruses for driving host cell carcinogenesis.  相似文献   

9.
10.
Human papillomavirus type 16 (HPV16) E6 and E7 are selectively retained and expressed in HPV16-associated human genital tumors. E6 is active in several cell culture assays, including transformation of NIH 3T3 cells, trans activation of the adenovirus E2 promoter, and cooperation with E7 to immortalize normal human keratinocytes. Biochemically, the HPV16 E6 protein has been shown to bind to tumor suppressor protein p53 in vitro and induce its degradation in a rabbit reticulocyte lysate. To examine the relationship between the various biological activities of E6 and inactivation of p53, we tested the abilities of dominant negative mutants of p53 to substitute functionally for E6 in the three cell culture assays. While wild-type p53 inhibited keratinocyte proliferation, both mouse and human mutant p53s, in conjunction with E7, increased proliferation of the keratinocytes, resulting in generation of immortalized lines. However, in contrast to E6, mutant p53 was unable to induce transformation or trans activate the adenovirus E2 promoter in NIH 3T3 cells. These results suggest that inactivation of wild-type p53 is necessary for HPV-induced immortalization of human keratinocytes and that different or additional activities are required for E6-dependent transformation and trans activation of NIH 3T3 cells.  相似文献   

11.
The p53 tumor suppressor is regulated by the MDM2 oncoprotein through a negative feedback mechanism. MDM2 promotes the ubiquitination and proteasome-dependent degradation of p53, possibly by acting as a ubiquitin ligase. In cervical cancer cells containing high-risk human papillomaviruses (HPV), p53 is also targeted for degradation by the HPV E6 oncoprotein in combination with the cellular E6-AP ubiquitin ligase. In this report, we describe the identification of efficient antisense oligonucleotides against human E6-AP. The roles of MDM2 and E6-AP in p53 regulation were investigated using a novel E6-AP antisense oligonucleotide and a previously characterized MDM2 antisense oligonucleotide. In HPV16-positive and HPV-18 positive cervical cancer cells, inhibition of E6-AP, but not MDM2, expression results in significant induction of p53. In HPV-negative tumor cells, p53 is activated by inhibition of MDM2 but not E6-AP. Furthermore, treatment with both E6-AP and MDM2 antisense oligonucleotides in HPV-positive cells does not lead to further induction of p53 over inhibition of E6-AP alone. Therefore, E6-AP-mediated degradation is dominant over MDM2 in cervical cancer cells but does not have a significant role in HPV-negative cells.  相似文献   

12.
Infection with human papillomaviruses (HPV) is strongly associated with the development of cervical cancer. The HPV E6 gene is essential for the oncogenic potential of HPV. E6 induces cell proliferation and apoptosis in cervical cancer precursor lesions and in cultured cells. Although induction of telomerase and inactivation of the tumor suppressor p53 play important roles for E6 to promote cell growth, the molecular basis of E6-induced apoptosis is poorly understood. While it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis, numerous studies demonstrated that E6 could in fact sensitize cells to apoptosis. Understanding the mechanism of p53-independent apoptosis is of clinical significance. In the present study, we investigated the mechanism of apoptosis during E6-mediated immortalization of primary human mammary epithelial cell (HMEC). E6 by itself is sufficient to immortalize HMECs and is believed to do so at least in part by activation of telomerase. During the process of E6-mediated HMEC immortalization, an increased apoptosis was observed. Mutational analysis demonstrated that E6-induced apoptosis was distinct from its ability to promote cell proliferation, activate telomerase, or degrade p53. While the known pro-apoptotic E6 target proteins such as Bak or c-Myc did not appear to play an important role, down-regulation of the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (p21) by E6 correlated with its ability to induce apoptosis. Ectopic expression of p21 inhibited E6-induced apoptosis. Moreover, a p53 degradation defective E6 mutant was competent for p21 down-regulation and apoptosis induction. The anti-apoptotic function of p21 may not simply be the result of p21-induced growth arrest. These studies demonstrate an E6 activity to down-regulate p21 that is important for induction of apoptosis.  相似文献   

13.
The E6 oncoprotein produced by high-risk mucosal HPV stimulates ubiquitinylation and proteasome-dependent degradation of the tumour suppressor p53 via formation of a trimeric complex comprising E6, p53, and E6-AP. p53 is also degraded by its main cellular regulator MDM2. The main binding site of p53 to MDM2 is situated in the natively unfolded N-terminal region of p53. By contrast, the regions of p53 implicated in the degradation by viral E6 are not fully identified to date. Here we generated a series of mutations (Y103G, Y107G, T155A, T155V, T155D, L264A, L265A) targeting the central folded core domain of p53 within a region opposite to its DNA-binding site. We analysed by in vitro and in vivo assays the impact of these mutations on p53 degradation mediated by viral E6 oncoprotein. Whereas all mutants remained susceptible to MDM2-mediated degradation, several of them (Y103G, Y107G, T155D, L265A) became resistant to E6-mediated degradation, confirming previous works that pointed to the core domain as an essential region for the degradation of p53. In parallel, we systematically checked the impact of the mutations on the transactivation activity of p53 as well as on the conformation of p53, analysed by Nuclear Magnetic Resonance (NMR), circular dichroism (CD), and antibody probing. These measurements suggested that the conformational integrity of the core domain is an essential parameter for the degradation of p53 by E6, while it is not essential for the degradation of p53 by MDM2. Thus, the intracellular stability of a protein may or may not rely on its biophysical stability depending on the degradation pathway taken into consideration.  相似文献   

14.
The E6 protein of cancer‐associated human papillomavirus type 16 (HPV16) binds to cellular p53 and promotes its degradation through the ubiquitin pathway. In an attempt to identify the regions of E6 that could be targetted for functional inhibition, we generated monoclonal antibodies to the HPV16 E6 oncoprotein (16E6) and analysed their effect on E6‐mediated p53 in vitro degradation. The isolated antibodies recognize the 16E6 oncoprotein expressed in the CaSki carcinoma cell line and strongly inhibit the proteolysis of p53 in vitro by binding specifically to a region of 10 residues located at the N‐terminal end of 16E6. The variable regions of these antibodies were cloned and expressed in E. coli as single chain Fvs (scFvs). Purified scFvs were present in monomeric form and totally abolished 16E6‐mediated p53 degradation by preventing the formation of E6/p53 protein complexes. Our results demonstrate that monovalent binding of scFvs to the N‐terminal end of 16E6 abrogates the biological mechanisms leading to the degradation of p53, and they suggest that this region of 16E6 may be a useful in vivo target for blocking the oncogenic activity of HPV16 E6 protein. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Bypass of two arrest points is essential in the process of cellular immortalization, one of the components of the transformation process. Expression of human papillomavirus type 16 E6 and E7 together can escape both senescence and crisis, processes which normally limit the proliferative capacity of primary human keratinocytes. Crisis is thought to be mediated by telomere shortening. Because E6 stimulates telomerase activity and exogenous expression of the TERT gene with E7 can immortalize keratinocytes, this function is thought to be important for E6 to cooperate with E7 to bypass crisis. However, it has also been reported that E6 dissociates increased telomerase activity from maintenance of telomere length and that a dominant-negative p53 molecule can substitute for E6 in cooperative immortalization of keratinocytes with E7. Thus, to determine which functions of E6 are required to allow bypass of crisis and immortalization of keratinocytes with E7, immortalization assays were performed using specific mutants of E6, in tandem with E7. In these experiments, every clone expressing an E6 mutant capable of degrading p53 was able to bypass crisis and immortalize, regardless of telomerase induction. All clones containing E6 mutants incapable of degrading p53 died at crisis. These results suggest that the ability of E6 to induce degradation of p53 compensates for continued telomere shortening in E6/E7 cells and demonstrate that degradation of p53 is required for immortalization by E6/E7, while increased telomerase activity is dispensable.  相似文献   

17.
X Li  P Coffino 《Journal of virology》1996,70(7):4509-4516
Human papillomavirus (HPV) E6 protein can inactivate tumor suppressor p53 by inducing its degradation. We now find that high-risk HPV E6 binds to p53 at two distinct sites; one is within the core structure of p53, and another is at the C terminus of p53. Binding to the core of p53 is required for E6-mediated degradation, as shown by deletion analysis and the properties of a point mutant at residue 135. Both low- and high-risk HPV E6 can bind to a C-terminal region of p53, but these interactions do not induce degradation. These results resolve previous seemingly contradictory findings that attributed the distinctive functional properties of high- and low-risk E6 proteins to either a difference in their abilities to associate with p53 or a difference in their N-terminal structures.  相似文献   

18.
The E6 oncoproteins of the cancer-associated or high-risk human papillomaviruses (HPVs) target the cellular p53 protein. The association of E6 with p53 leads to the specific ubiquitination and degradation of p53 in vitro, suggesting a model by which E6 deregulates cell growth control by the elimination of the p53 tumor suppressor protein. Complex formation between E6 and p53 requires an additional cellular factor, designated E6-AP (E6-associated protein), which has a native and subunit molecular mass of approximately 100 kDa. Here we report the purification of E6-AP and the cloning of its corresponding cDNA, which contains a novel open reading frame encoding 865 amino acids. E6-AP, translated in vitro, has the following properties: (i) it associates with wild-type p53 in the presence of the HPV16 E6 protein and simultaneously stimulates the association of E6 with p53, (ii) it associates with the high-risk HPV16 and HPV18 E6 proteins in the absence of p53, and (iii) it induces the E6- and ubiquitin-dependent degradation of p53 in vitro.  相似文献   

19.
Oncoprotein E6 is essential for oncogenesis induced by human papillomaviruses (HPVs). The solution structure of HPV16-E6 C-terminal domain reveals a zinc binding fold. A model of full-length E6 is proposed and analyzed in the context of HPV evolution. E6 appears as a chameleon protein combining a conserved structural scaffold with highly variable surfaces participating in generic or specialized HPV functions. We investigated surface residues involved in two specialized activities of high-risk genital HPV E6: p53 tumor suppressor degradation and nucleic acid binding. Screening of E6 surface mutants identified an in vivo p53 degradation-defective mutant that fails to recruit p53 to ubiquitin ligase E6AP and restores high p53 levels in cervical carcinoma cells by competing with endogeneous E6. We also mapped the nucleic acid binding surface of E6, the positive potential of which correlates with genital oncogenicity. E6 structure-function analysis provides new clues for understanding and counteracting the complex pathways of HPV-mediated pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号