首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cell wall of Actinoplanes philippinesis VKM Ac-647 harbours several carbohydrate-containing anionic polymers. (1) The main polymer of the wall is of a poly(glycosylglycerol phosphate) nature. Its monomeric units — O--d-mannopyranosyl-(14)--d-galactopyranosyl-(11)-glycerol monophosphates — are connected by phosphodiester bonds involving the hydroxyl groups at glycerol C3 and galactose C6. There also are chains without mannosyl substitutents. The teichoic acid structure has been established by chemical analysis and with 1H and 13C NMR spectroscopy. This is the first finding of a teichoic acid with mannosyl residues in a bacterial cell wall. (2) The phosphorylated mannan contains mannose and 2-O-methylmannose. Its core chain has -1,2; -1,3; and -1,6 substitutions as revealed by 13C NMR spectroscopy.The peptide unit of the peptidoglycan contains no l-alanine, instead of which position 1 is occupied by glycine; and diaminopimelic acid is represented, besides its meso- (or DD) form, by small amounts of its LL isomer.Abbreviations Gro glycerol - Gro2P glycerol-2 phosphate - APT attached-proton-test - Ptot total content of phosphorus - Plab phosphorus mineralized in 7 min at 100°C - PNA phosphorus of nucleic acids - Pstab stable phosphorus - T trace amounts  相似文献   

2.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

3.
Adult snails synthesize in their albumen glands a storage polysaccharide called galactan which is utilized by the developing embryos. With [6-3H]-uridine 5diphosphogalactose the incorporation of labelled d-galactose into the polysaccharide can be traeed in freshly removed glands maintained in a bathing buffer. After centrifugation of homogenized glands, galactosyltrasferase activity is only found in the insoluble fraction. Chaps extracts of this material retain almost all of their activity and can be used for comparison of the incorporation rates into different native galactans or in various oligosaccharides. A highly efficient -(16) galactosyltransferase was detected when methyl 3-O-(-d-galactopyranosyl)--d-galactopyranoside was offered as acceptor. The substitution at the penultimate residue resulted in a branched trisaccharide as demonstrated by 1H-NMR-spectroscopy and permethylation analysis of the reaction product. Comparable results were obtained with various oligosaccharides containing an internal galactose unit glycosidically linked 13. Attempts to separate and purify the various enzymes involved resulted in the isolation of a fraction which is able to transfer d-Gal exclusively to native galactan, but not to oligosaccharides. A further fraction was obtained from a different resin with activity for native galactan and 6-O-(-d-galactopyranosyl)-d-galactopyranose. but without any for methyl-3-O-(-d-galactopyranosyl)--d-galactopyranose. It is thus concluded that at least three different enzymes are involved in the biosynthesis of this snail galactan.Abbreviation Gal galactose - glc gas-liquid chromatography - Gro glycerol - tlc thin layer chromatography  相似文献   

4.
Two extracellular -glucosidases (cellobiase, EC 3.2.1.21), I and II, from Aspergillus nidulans USDB 1183 were purified to homogeneity with molecular weights of 240,000 and 78,000, respectively. Both hydrolysed laminaribiose, -gentiobiose, cellobiose, p-nitrophenyl--L-glucoside, phenyl--L-glucoside, o-nitrophenyl--L-glucoside, salicin and methyl--L-glucoside but not -linked disaccharides. Both were competitively inhibited by glucose and non-competitively (mixed) inhibited by glucono-1,5-lactone. -Glucosidase I was more susceptible to inhibition by Ag+ and less inhibited by Fe2+ and Fe3+ than -glucosidase II.  相似文献   

5.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   

6.
The structures of cell wall teichoic acids of the members of newly recognized genera of the order Actinomycetales were studied. Planotetraspora mira VKM Ac-2000T contains two types of teichoic acids: 2,3-poly(glycerol phosphate) substituted with -D-Galp at C-1 of glycerol and 1,3-poly(glycerol phosphate) substituted with -L-Rhap at OH-2 of glycerol (60%). Herbidospora cretacea VKM Ac-1997T contains the chains of 1,3-poly(glycerol phosphate) partially substituted with -D-Galp and -D-GalpNAc at C-2 of glycerol. The majority of -D-galactopyranosyl residues are substituted at OH-3 with a sulfate. The aforementioned teichoic acids have not been found in bacteria thus far. Actinocorallia herbida VKM Ac-1994T contains poly(galactosylglycerol phosphate), with the -Galp-(12)-Gro-P repeating units being linked via the phosphodiester bonds between the OH-3 of glycerol and OH-6 of galactose. Earlier, this structure was found in the cell wall of Actinomadura madura. The polymer structures were determined by chemical analysis and using 13C-NMR spectroscopy. The results show that teichoic acids are widespread in the order Actinomycetales.  相似文献   

7.
We have analysed the mucins synthesized by the HT-29 MTX cell subpopulation, derived from the HT-29 human colon carcinoma cells through a selective pressure with methotrexate (Lesuffleuret al., 1990,Cancer Res 50: 6334–43), in the presence of benzyl-N-acetyl--galactosaminide (GalNAc-O-benzyl), which is a potential competitive inhibitor of the 1,3-galactosyltransferase that synthesizes the T-antigen. The main observation was a 13-fold decrease in the sialic acid content of mucins after 24 h of exposure to 5mm GalNAc-O-benzyl. This effect was accompanied by an increased reactivity of these mucins to peanut lectin, testifying to the higher amount of T-antigen. The second observation was a decrease in the secretion of the mucins by GalNAc-O-benzyl treated cells. The decrease in mucin sialyation was achieved through thein situ -galactosylation of GalNAc-O-benzyl into Gal1–3GalNAc-O-benzyl, which acts as a competitive substrate of Gal1–3GalNAc 2,3-sialyltransferase, as shown by the intracellular accumulation of NeuAc2–3Gal1–3GalNAc-O-benzyl in treated cells.Abbreviations BSM bovine submaxillary mucin - MTX methotrexate - PBS sodium phosphate 10mm, NaCl 0.15m, pH 7.4 buffer - pNp p-nitrophenol - TBS Tris/HCl 10mm, NaCl 0.15m, pH 7.4 buffer Enzymes: CMP-NeuAc: Gal1–3/4GlcNAc 2,3-sialyltransferase, ST3(N), EC 2.4.99.6; CMP-NeuAc: Gal1–4GlcNAc 2,6-sialyltransferase, ST6(N), EC 2.4.99.1; CMP-NeuAc: Gal1–3GalNAc 2,3-sialyltransferase, ST3(O), EC 2.4.99.4; CMP-NeuAc: R-GalNAc1-O-Ser 2,6-sialyltransferase, ST6(O)-I, EC 2.4.99.3; CMP-NeuAc: NeuAc2–3Gal1–3GalNAc 2,6-sialyltransferase, ST6(O)-II, EC 2.4.99.7; UDP-GlcNAc: Gal1–3GalNAc-R·(GlcNAc to GalNAc) 1,6-N-acetylglucosaminyltransferase, EC 2.4.1.102; UDP-GlcNAc: GalNAc-R 1,3-N-acetylglucosaminyltransferase, EC 2.4.1.147; UDP-Gal: GalNAc-R 1,3-galactosyltransferase, EC 2.4.1.122.  相似文献   

8.
The trisaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 1 and the tetrasaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-3-O-(-l-fucopyranosyl)-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 2 were synthesized. Thioglycosides, suitably protected, activated directly with methyl trifluoromethanesulfonate or dimethyl(methylthio)sulfonium tetrafluoroborate or activated after bromine treatment with halophilic reagents, were used as glycosyl donors in the construction of the glycosidic linkages.Abbreviations DMTSB dimethyl(methylthio)sulfonium tetrafluoroborate - Phth phthaloyl - MBn p-methoxybenzyl - ClBn p-chlorobenzyl  相似文献   

9.
-Glucuronidase from callus cultures of Scutellaria baicalensis Georgi was purified to apparent homogeneity by fractionated ammonium-sulfate precipitation and chromatography on diethylaminoethyl-cellulose, hydroxylapatite and baicalin-conjugated Sepharose 6B. A 650-fold purification was obtained by this purification system. When subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified protein migrated as a single band with a molecular mass of 55 kDa. We determined that the native enzyme has a molecular mass of 230 kDa using gel-filtration chromatography. These results suggested that the enzyme exists as a homotetramer composed of four identical 55-kDa subunits. The enzyme showed a broad pH optimum between 7.0 and 8.0. The K m values were 9 M, 10 M, 30 M and 40 M for luteolin 3 -O--d-glucuronide, baicalin, wogonin 7-O--d-glucoronide and oroxlin 7-O--d-glucuronide, respectively. The enzyme was most active with flavone 7-O--d-glucuronides.Abbreviations BA N6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - pI isoelectric point - R t retention time  相似文献   

10.
N-acetylhexosaminidase fromNocardia orientalis catalysed the synthesis of lacto-N-triose II glycoside (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OMe,3) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OMe (4) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OMe (5) throughN-acetylglucosaminyl transfer fromN,N-diacetylchitobiose (GlcNAc2) to methyl -lactoside. The enzyme formed the mixture of trisac-charides3, 4 and5 in 17% overall yield based on GlcNAc2, in a ratio of 20:21:59. Withp-nitrophenyl -lactoside as an acceptor, the enzyme also producedp-nitrophenyl -lacto-N-trioside II (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p,6) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p (7) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OC6H4NO2-p (8). In this case, when an inclusion complex ofp-nitrophenyl lactoside acceptor with -cyclodextrin was used, the regioselectivity of glycosidase-catalysed formation of trisaccharide glycoside was substantially changed. It resulted not only in a significant increase of the overall yield of transfer products, but also in the proportion of the desired compound6.Abbreviations GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1-4)-2-acetamido-2-deoxy-d-glucose - NAHase N-acetylhexosaminidase - -CD -cyclodextrin  相似文献   

11.
A simple synthesis of octyl 3,6-di-O-(-d-mannopyranosyl)--d-mannopyranoside is described. The key features of the synthetic scheme are the formation of the -mannosidic linkage by 1-O-alkylation of 2,3,4,6-tetra-O-acetyl-,-d-mannopyranose with octyl iodide and glycosylation of unprotected octyl -d-mannopyranoside using limiting acetobromomannose. The trisaccharide is shown to be an acceptor forN-acetylglucosaminyltransferase-I with aK M of 585 µm.  相似文献   

12.
Two trisaccharide glycosides,p-trifluoroacetamidophenylethyl 3-O-(2-acetamido-2-deoxy--d-galactopyranosyl)-2-O-(-l-fucopyranosyl)--d-galactopyranoside andp-trifluoroa-cetamidophenylethyl 2-O-(-l-fucopyranosyl)-3-O-(-d-galactopyranosyl)--d-galactopyranoside, corresponding to the human blood group A and B determinants, were synthesized. A key fucosylgalactosyl disaccharide derivative was glycosylated with galactosaminyl or galactosyl donors, respectively. Dimethyl (thiomethyl)sulfonium tetrafluoroborate was used for thioglycoside activation in coupling reactions.  相似文献   

13.
The preparation of benzyl 2,3,6,2,6-penta-O-benzyl--d-lactoside, which is a key intermediate for chemical synthesis of oligosaccharide components of glycosphingolipids, was achieved by an improved method. The 3-O-p-methoxybenzyl and 3-O-methyl derivatives were prepared from benzyl 2,3,6,2,6-penta-O-benzyl--d-lactoside through stannylation. By using benzyl -d-lactoside as starting material, benzyl 3-O-methyl-, 3-O-benzyl- and 3-O-p-methoxybenzyl--d-lactoside were regioselectively synthesized using the same procedure.  相似文献   

14.
Shoot tips of Triticum aestivum L. cvs. Turbo and Nandu, both summer wheat varieties, were excised from 4 and 10 day-old seedlings, and used for induction of embryogenic callus. A modified L3 medium, supplemented with 10 M 2,4-dichlorophenoxyacetic acid (2,4-d) for culture initiation, and 5 M 2,4-d for subculturing, was optimal; 90% of 4 day-old Turbo seedlings formed embryogenic callus. Optimal plant regeneration was achieved from callus incubated on a modified MS medium without 2,4-d, but supplemented with 2.22 M 6-benzylaminopurine and 0.27 M naphthaleneacetic acid. Plantlets formed via embryogenesis from all embryogenic Turbo calli initiated from 4 day-old explants, with a mean number of 8 regenerants per explant. Regeneration occured via embryogenesis only. Results obtained using Nandu were within the same range.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid  相似文献   

15.
The metabolic pattern of utilization of [1,2,3,4-14C, methyl-3H] -butyrobetaine and d-and l-[1-14C, methyl-3H]carnitine has been examined with variously grown resting cell suspensions of Acinetobacter calcoaceticus and Pseudomonas putida. Ps. putida grown on d, l-carnitine as the sole source of carbon, degraded only l-carnitine with stoichiometric accumulation of glycinebetaine. Alternatively, when grown on -butyrobetaine, Ps. putida rapidly metabolized -butyrobetaine, and to a lesser but significant extent, both d-and l-carnitine with equivalent formation of trimethylamine and degradation of the betaine carbon skeleton. Ac. calcoaceticus grown on either d,l-carnitine or -butyrobetaine, effectively utilized all three betaines at nearly the same rates. Disappearance of each of these quarternary ammonium compounds was accompanied by stoichiometric formation of trimethylamine and degradation of the carbon backbone. Utilization of the betaines and corresponding formation of trimethylamine by resting cell suspensions of appropriately grown Ac. calcoaceticus and Ps. putida, was essentially abolished under conditions of anaerobiosis and severely impaired in the presence of sodium cyanide, sodium azide, 2,4-dinitrophenol or 2,2-bipyridine. The results of the present investigations with resting cell suspensions of both Ac. calcoaceticus and Ps. putida do not support an earlier suggestion that -butyrobetaine degradation in these organisms proceeds by its prior hydroxylation to l-carnitine. Indeed, disrupted cell-free preparations of Ac. calcoaceticus and Ps. putida grown on either d,l-carnitine or -butyrobetaine showed no detectable -butyrobetaine hydroxylase activity.  相似文献   

16.
Cell walls isolated from pollen of Nicotiana alata germinated in vitro contain glucose and arabinose as the predominant monosaccharides. Methylation analysis and cytochemical studies are consistent with the major polysaccharides being a (13)--D-glucan (callose) and an arabinan together with small amounts of cellulose. The cell walls contain 2.8% uronic acids. Alcian blue stains the pollen-tube walls intensely at the tip, indicating that acidic polysaccharides are concentrated in the tip. Synthetic aniline-blue fluorochrome is specific primarily for (13)--D-glucans and stains the pollen-tube walls, except at the tip. Protein (1.5%), containing hydroxyproline (2.4%), is present in the cell wall.  相似文献   

17.
Summary One-dimensional transient NOE build-up curves were measured for the synthetic disaccharide -d-Fuc-(14)--d-GlcNAc 1 utilizing Gaussian shaped pulses. Simulated build-up curves from Metropolis Monte Carlo simulations were compared to the experimental data. Disaccharide 1 is structurally related to methyl -d-maltoside in that it also contains an -(14) linkage, and it has the same configuration of groups around the glycosidic linkage. Analysis of NOEs in methyl -d-maltoside is restricted to those observed upon selective excitation of H1 because of severe spectral overlap. The situation is different in 1 where 1H-NMR signals are well separated. Several interglycosidic NOEs were observed. The corresponding build-up curves allowed an accurate determination of the conformational preferences at the glycosidic linkage in 1. Comparison of experimental and theoretical NOE build-up curves showed clearly that rigid minimum-energy models cannot account for the experimental data. The best fit of experimental NOE build-up curves was obtained with theoretical curves from a 2×106 step Metropolis Monte Carlo simulation with the temperature parameter set at 1000 K. Finally, it was observed that only the interglycosidic NOE H5/H6-pro-S significantly depends upon varying conformation distributions at the -(14)-glycosidic linkage, induced by choosing different temperature parameters for the Metropolis Monte Carlo simulations.  相似文献   

18.
-Fructofuranosidase from Aspergillus japonicus MU-2, which produces fructo-oligosaccharides (1-kestose: O--D-fructofuranosyl-(2 1)--D-fructofuranosyl -D-glucopyranoside); and nystose: O--D-fructofuranosyl-(2 1)--D-fructofuranosyl-(2 1)--D-fructofuranosyl -D-glucopyranoside) from sucrose, was immobilized, covalently with glutaraldehyde onto alkylamine porous silica, at high efficiency (64%). Optimum pore diameter of porous silica for immobilization of the enzyme was 91.7 nm. After immobilization, the enzyme's stabilities to temperature, metal ions and proteolysis were improved, while its optimum pH and temperature were unchanged. The highest efficiency of continuous production of fructo-oligosaccharides (more than 60%), using a column packed with the immobilized enzyme, was obtained at 40% to 50% (w/v) sucrose. The half-life of the column during long-term continuous operation at 55°C was 29 days.  相似文献   

19.
A stratagem for the synthesis ofneoglycoproteins suitable for the selective serodiagnosis of leprosy is described in which synthetic 3,6-di-O-methyl--d-glucopyranose, the epitope of phenolic glycolipid I fromMycobacterium leprae, was used. Condensation of 8-methoxycarbonyloctanol with the acetobromo derivative of 3,6-di-O-methylglucose gave 8-methoxycarbonyloctyl 2,4-di-O-acetyl-3,6-di-O-methyl--d-glucopyranoside in 65% yield, and with absolute stereospecificity for the anomer. The deacylated product was converted to the crystalline hydrazide and coupled to bovine gamma globulin, bovine serum albumin and poly-d-lysinevia intermediate acyl azide formation to produce the 8-carbonyloctyl 3,6-di-O-methyl--d-glucopyranosyl polypeptides. Theneoglycoproteins were highly sensitive in ELISA and emulated the specificity of the native glycolipid in analysis of sera from patients throughout the spectrum of leprosy and from different geographical regions. The 8-carbonyloctyl 3,6-di-O-methyl--d-glucopyranoside-bovine serum albumin was also synthesized and shown to have about one-half the activity of the -linkedneoglycoprotein. A different synthetic approach produced the 8-carbonyloctyl 4-O-(3,6-di-O-methyl--d-glucopyranosyl)--l-rhamnopyranoside-bovine serum albumin which was also highly sensitive and specific for the serodiagnosis of leprosy. The presence of the second sugar unit, similar to that in the native glycolipid but for the absence ofO-methyl groups, seemed to provide a probe with greater felicity for the serological detection of tuberculoid leprosy.Thus, the results indicate that highly sensitive and specific antigen probes for the serodiagnosis of leprosy can be constructed based only on the terminal one or two sugars of phenolic glycolipid I, and the synthetic approach leads to the formation of haptens with absolute stereospecificity.Nomenclature BGG bovine gamma globulin - PGL-I phenolic glycolipid I - PDL poly-d-lysine - PBS phophate-buffered saline - 3,6-Me2-Glc-Link-BSA 8-carbonyloctyl 3,6-di-O-methyl-glucopyranoside-bovine senalbumin - 3,6-Me2-Glc-Rha-Link-BSA 8-carbonyloctyl 4-O-(3,6-di-O-methyl--d-glucopyranosyl)--l-rhan pyranoside-BSA  相似文献   

20.
-Fructofuranosidase fromAspergillus japonicus, which produces 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose, was purified to homogeneity by fractionation with calcium acetate and ammonium sulphate and chromatography with DEAE-Cellulofine and Sephadex G-200. Its molecular size was estimated to be about 304,000 Da by gel filtration. The enzyme was a glycoprotein which contained about 20% (w/w) carbohydrate. Optimum pH for the enzymatic reaction was 5.5 to 6. The enzyme was stable over a wide pH range, from pH 4 to 9. Optimum reaction temperature for the enzyme was 60 to 65°C and it was stable below 60°C. The Km value for sucrose was 0.21m. The enzyme was inhibited by metal ions, such as those of silver, lead and iron, and also byp-chloromercuribenzoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号