首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacitracin resistance is normally conferred by either of two major mechanisms, the BcrABC transporter, which pumps out bacitracin, or BacA, an undecaprenol kinase that provides C(55)-isoprenyl phosphate by de novo synthesis. We demonstrate that the Bacillus subtilis bcrC (ywoA) gene, encoding a putative bacitracin transport permease, is an important bacitracin resistance determinant. A bcrC mutant strain had an eightfold-higher sensitivity to bacitracin. Expression of bcrC initiated from a single promoter site that could be recognized by either of two extracytoplasmic function (ECF) sigma factors, sigma(X) or sigma(M). Bacitracin induced expression of bcrC, and this induction was dependent on sigma(M) but not on sigma(X). Under inducing conditions, expression was primarily dependent on sigma(M). As a consequence, a sigM mutant was fourfold more sensitive to bacitracin, while the sigX mutant was only slightly sensitive. A sigX sigM double mutant was similar to a bcrC mutant in sensitivity. These results support the suggestion that one function of B. subtilis ECF sigma factors is to coordinate antibiotic stress responses.  相似文献   

3.
4.
5.
Here we report the genomic structure including the promoter sequence and coding region of NtPDR1 (Nicotiana tabacum Pleiotropic Drug Resistance 1), which is an elicitor-responsive gene encoding an ATP binding cassette (ABC) transporter that might be involved in the defense response in tobacco, as we reported recently. The NtPDR1 gene consists of 20 exons and 19 introns. Among the introns, the first and fifth are much larger than the others and harbor typical miniature inverted-repeat transposable elements (MITEs). One of the MITE elements in the first intron, termed NtToya1, belongs to the Toya family that was recently described in rice, while the other element in the fifth intron, termed NtStowaway101, shows high homology with the Stowaway elements of the IS630-Tc1-mariner family. Many of the genes we found to harbor Toya and Stowaway elements in Nicotiana species by BLAST search are also involved in stress responses or plant-pathogen interactions. The existence of putative cis-elements (a GCC box, three W boxes, and several JA-responsive elements) in the promoter region supports our previous finding that this gene is strongly inducible by elicitation and methyljasmonate, and that this ABC transporter might be essential for plant defense responses. Furthermore, Southern blot analysis and PCR amplification of the introns harboring the MITE-like elements from genomic DNA of three Nicotiana species suggests that NtPDR1 originated from N. sylvestris.  相似文献   

6.
7.
Mycobacterium tuberculosis is a specialized intracellular pathogen that must regulate gene expression to overcome stresses produced by host defenses during infection. SigH is an alternative sigma factor that we have previously shown plays a role in the response to stress of the saprophyte Mycobacterium smegmatis. In this work we investigated the role of sigH in the M. tuberculosis response to heat and oxidative stress. We determined that a M. tuberculosis sigH mutant is more susceptible to oxidative stresses and that the inducible expression of the thioredoxin reductase/thioredoxin genes trxB2/trxC and a gene of unknown function, Rv2466c, is regulated by sigH via expression from promoters directly recognized by SigH. We also determined that the sigH mutant is more susceptible to heat stress and that inducible expression of the heat shock genes dnaK and clpB is positively regulated by sigH. The induction of these heat shock gene promoters but not of other SigH-dependent promoters was markedly greater in response to heat versus oxidative stress, consistent with their additional regulation by a heat-labile repressor. To further understand the role of sigH in the M. tuberculosis stress response, we investigated the regulation of the stress-responsive sigma factor genes sigE and sigB. We determined that inducible expression of sigE is regulated by sigH and that basal and inducible expression of sigB is dependent on sigE and sigH. These data indicate that sigH plays a central role in a network that regulates heat and oxidative-stress responses that are likely to be important in M. tuberculosis pathogenesis.  相似文献   

8.
ATP-binding cassette (ABC) transporter proteins mediate energy-dependent transport of substrates across cell membranes. Numerous ABC transporter-related genes have been found in the Synechocystis sp. PCC6803 genome by genome sequence analysis including H(+), iron, phosphate, polysaccharide, and CO(2) transport-related genes. The substrates of many other ABC transporters are still unknown. To identify ABC transporters involved in acid tolerance, deletion mutants of ABC transporter genes with unknown substrates were screened for acid stress sensitivities in low pH medium. It was found that cells expressing the deletion mutant of slr1045 were more sensitive to acid stress than the wild-type cells. Moreover, slr1045 expression in the wild-type cells was increased under acid stress. These results indicate that slr1045 is an essential gene for survival under acid stress. The mutant displayed high osmotic stress resistance and high/low temperature stress sensitivity. Considering the temperature-sensitive phenotype and homology to the organic solvent-resistant ABC system, we subsequently compared the lipid profiles of slr1045 mutant and wild-type cells by thin-layer chromatography. In acid stress conditions, the phosphatidylglycerol (PG) content in the slr1045 mutant cells was approximately 40% of that in the wild-type cells. Moreover, the addition of PG to the medium compensated for the growth deficiency of the slr1045 mutant cells under acid stress conditions. These data suggest that slr1045 plays a role in the stabilization of cell membranes in challenging environmental conditions. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

9.
During cultivation in the presence of trehalose Streptomyces reticuli expresses an inducible, highly specific trehalose uptake system that is absent in Streptomyces lividans. A palmitated trehalose-binding protein was identified in the cytoplasmic membrane of mycelia, extracted with the detergent Triton X-100 and purified using a trehalose affinity matrix. Immunological studies showed that within S. reticuli the synthesis of the ATP-binding protein MsiK is induced by trehalose. The data suggest that MsiK assists the trehalose ABC transporter, like the previously described ABC transport systems for maltose and cellobiose/cellotriose, respectively.  相似文献   

10.
11.
12.
We report the identification of the full-length cDNA for a novel ATP-binding cassette (ABC) transporter from human macrophages. The mRNA is of 6.8 kb size and contains an open reading frame encoding a polypeptide of 2146 amino acids with a calculated molecular weight of 220 kDa. The predicted protein product is composed of two transmembrane domains and two nucleotide binding folds indicating that it pertains to the group of full-size ABC transporters. The novel transporter shows highest protein sequence homology with the recently cloned human cholesterol and phospholipid exporter ABCA1 (54%) and the human retinal transporter ABCR (49%), both members of the ABC transporter subfamily A. In accordance with the currently proposed classification, the novel transporter was designated ABCA7. ABCA7 mRNA was detected predominantly in myelo-lymphatic tissues with highest expression in peripheral leukocytes, thymus, spleen, and bone marrow. Expression of ABCA7 is induced during in vitro differentiation of human monocytes into macrophages. In macrophages, both the ABCA7 mRNA and protein expression are upregulated in the presence of modified low density lipoprotein and downregulated by HDL(3). Our results suggest a role for ABCA7 in macrophage transmembrane lipid transport.  相似文献   

13.
14.
Serotype 3 reoviruses inhibit cellular proliferation by inducing a G(2)/M phase cell cycle arrest. Reovirus-induced G(2)/M phase arrest requires the viral S1 gene-encoded sigma1s nonstructural protein. The G(2)-to-M transition represents a cell cycle checkpoint that is regulated by the kinase p34(cdc2). We now report that infection with serotype 3 reovirus strain Abney, but not serotype 1 reovirus strain Lang, is associated with inhibition and hyperphosphorylation of p34(cdc2). The sigma1s protein is necessary and sufficient for inhibitory phosphorylation of p34(cdc2), since a viral mutant lacking sigma1s fails to hyperphosphorylate p34(cdc2) and inducible expression of sigma1s is sufficient for p34(cdc2) hyperphosphorylation. These studies establish a mechanism by which reovirus can perturb cell cycle regulation.  相似文献   

15.
本文以拟南芥野生型、ABC转运体缺失突变体(Atmrp4、Atmrp5和Atmrp4/5)为材料研究了硫化氢(hydrogensulfide,H2S)和ABC转运体在盐胁迫诱导拟南芥气孔关闭中的作用及其相互关系。结果表明,盐胁迫能够引起拟南芥叶片AtMRP4及AtMRP5表达量显著升高,诱导野生型拟南芥叶片气孔关闭,但对Atmrp4、Atmrp5及Atmrp4/5气孔开度无显著影响;而ABC转运体抑制剂格列本脲(glibenclamide,Gli)可减弱盐胁迫诱导的拟南芥气孔关闭的作用,表明ABC转运体参与盐胁迫诱导的拟南芥气孔关闭过程。盐胁迫能够引起野生型拟南芥H,s合成相关酶L-/D-半胱氨酸脱巯基酶(L-/D-CDes)活性及H2S含量显著升高,而ABc转运体抑制剂格列本脲处理后则没有这种变化,同时盐胁迫也不能引起Atmrp4、Atmrp5及Atmrp4/5的L-/19-CDes活性及H2S含量显著升高,表明ABC转运体位于H2s上游参与盐胁迫诱导气孔关闭过程。  相似文献   

16.
Tetracycline-induced proteome of Pseudomonas putida KT2440 was analyzed by 2-D gel electrophoresis and matrix-assisted laser desorption ionization–time of flight/mass spectrum (NALDI-TOF/MS) in order to understand cellular response to tetracycline. Of the proteins upregulated in a culture medium containing subinhibitory concentration of tetracycline (50 μg/mL), we identified 38 proteins from cytosol and precipitated fractions by peptide mass fingerprinting and mass spectrum/mass spectrum analysis. Various amino acids ABC transporters, a ribose ABC transporter, and a sulfate ABC transporter were found to be upregulated. Protein synthesis-related proteins, stress proteins, energy metabolic enzymes, and unknown proteins were also strongly induced. Of the identified upregulated proteins, several proteins (isocitrate lyase, branched-chain amino acid ABC transporter, superoxide dismutase, etc.) were also upregulated under phenol-induced stress condition. These results demonstrate that tetracycline at a high concentration induced comprehensive stress in P. putida KT2440 and the global induction of proteins related to bacteria survival. Proteome analysis was found to be a useful tool for the elucidation of antibiotic-induced proteins in the present study.  相似文献   

17.
The yeast ATM1 gene is essential for normal cellular iron homeostasis. Deletion of ATM1 results in mitochondrial iron accumulation and increased sensitivity to oxidative stress and transition metal toxicity. Atm1p is an ATP-binding cassette (ABC) transporter localized to the mitochondrial inner membrane. The specific function of Atm1p has not been determined, though roles in both mitochondrial iron export and cytosolic Fe-S cluster assembly have been proposed. We undertook a screen for yeast genes capable of suppressing the abnormalities of cellular iron metabolism demonstrated by Deltaatm1 cells. One of the genes we identified was MDL1, which like ATM1, encodes a mitochondrial inner membrane ABC transporter. Mdl1p has previously been shown to function in the export of peptides from the mitochondrial matrix. We demonstrate that over-expression of MDL1 in Deltaatm1 cells results in a reduction of mitochondrial iron content, and decreased sensitivity to H(2)O(2) and transition metal toxicity. Additionally, in studies of the effect of over-expression and deletion of MDL1, we have identified a novel role for Mdl1p in the regulation of cellular resistance to oxidative stress.  相似文献   

18.
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.  相似文献   

19.
20.
Proteins from the extracellular medium of Aeropyrum pernix K1 were separated by two-dimensional electrophoresis and identified using mass spectrometry. Six different substrate-binding proteins (SBPs) from the ATP-binding cassette (ABC) transporter family were identified: (1) ABC transporter SBP (Q9YC61); (2) Branched-chain amino-acid ABC transporter, branched-chain amino-acid-binding protein (Q9YDJ6); (3) Oligopeptide ABC transporter, oligopeptide-binding protein (Q9YBL5); (4) Probable ABC transporter SBP (Q9Y9N4); (5) ABC transporter SBP (Q9YBG7); (6) ABC transporter SBP (Q9YFD7). Based on their orthology, division into the following classes was predicted: (1) multiple sugar-transport system SBPs; (2) peptide/nickel-transport system SBPs; and (3) branched-chain amino-acid-transport system SBPs. Further bioinformatic analyses showed that the identified SBPs differ in motif and in transmembrane-domain and signal-peptide organisation. Additionally, for all of these SBPs, sequence homology was found for archaeal proteins, and homologous proteins in bacteria were also found for the ABC transporter SBP Q9YBG7 and the ABC transporter SBP Q9YFD7. This is the first study, where different ABC SBPs from the extracellular medium of A. pernix have been identified using the combined methodology of two-dimensional electrophoresis and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号