首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation of the X-linked oral-facial-digital syndrome type 1 (OFD1) gene is embryonic lethal in males and results in craniofacial malformations and adult onset polycystic kidney disease in females. While the OFD1 protein localizes to centriolar satellites, centrosomes and basal bodies, its cellular function and how it relates to cystic kidney disease is largely unknown. Here, we demonstrate that OFD1 is assembled into a protein complex that is localized to the primary cilium and contains the epidermal growth factor receptor (EGFR) and domain organizing flotillin proteins. This protein complex, which has similarity to a basolateral adhesion domain formed during cell polarization, also contains the polycystin proteins that when mutant cause autosomal dominant polycystic kidney disease (ADPKD). Importantly, in human ADPKD cells where mutant polycystin-1 fails to localize to cilia, there is a concomitant loss of localization of polycystin-2, OFD1, EGFR and flotillin-1 to cilia. Together, these data suggest that polycystins are necessary for assembly of a novel flotillin-containing ciliary signaling complex and provide a molecular rationale for the common renal pathologies caused by OFD1 and PKD mutations.  相似文献   

2.
《Autophagy》2013,9(2):379-381
Autophagy delivers many proteins and cellular components to the lysosome for degradation via selective or nonselective mechanisms. By controlling the stability of defined protein factors, autophagy might regulate cellular processes in a precise and finely-tuned manner. In this study, we demonstrated that autophagy positively regulates the biogenesis of the primary cilium, an antenna-like organelle that senses the environment and transduces signals. Defects in the function or structure of cilia cause a number of human diseases called “ciliopathies.” We found that the autophagosome membrane anchored protein LC3 interacts with OFD1 (oral-facial-digital syndrome 1) and removes it from the centriolar satellite upon serum starvation to initiate primary cilium biogenesis. OFD1 regulation and primary cilium formation are defective in autophagy-deficient cells, and reducing OFD1 protein levels through RNA interference rescues primary cilium formation. More strikingly, knockdown of OFD1 induces primary cilium formation in unstressed cells as well as in a human breast cancer cell that was previously reported to have lost the ability to form primary cilia. These findings therefore suggest an unexpected link among autophagy, ciliogenesis, ciliopathy, and cancers.  相似文献   

3.
The primary cilium is a microtubule‐based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X‐linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin‐proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G‐protein‐coupled receptor (GPCR)‐cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2‐UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non‐phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.  相似文献   

4.
The actin motor protein myosin VI is a multivalent protein with diverse functions. Here, we identified and characterised a myosin VI ubiquitous interactor, the oral‐facial‐digital syndrome 1 (OFD1) protein, whose mutations cause malformations of the face, oral cavity, digits and polycystic kidney disease. We found that myosin VI regulates the localisation of OFD1 at the centrioles and, as a consequence, the recruitment of the distal appendage protein Cep164. Myosin VI depletion in non‐tumoural cell lines causes an aberrant localisation of OFD1 along the centriolar walls, which is due to a reduction in the OFD1 mobile fraction. Finally, loss of myosin VI triggers a severe defect in ciliogenesis that could be, at least partially, ascribed to an impairment in the autophagic removal of OFD1 from satellites. Altogether, our results highlight an unprecedent layer of regulation of OFD1 and a pivotal role of myosin VI in coordinating the formation of the distal appendages and primary cilium with important implications for the genetic disorders known as ciliopathies.  相似文献   

5.
Centriolar satellites are proteinaceous granules that are often clustered around the centrosome. Although centriolar satellites have been implicated in protein trafficking in relation to the centrosome and cilium, the details of their function and composition remain unknown. FOP (FGFR1 Oncogene Partner) is a known centrosome protein with homology to the centriolar satellite proteins FOR20 and OFD1. We find that FOP partially co-localizes with the satellite component PCM1 in a cell cycle-dependent manner, similarly to the satellite and cilium component BBS4. As for BBS4, FOP localization to satellites is cell cycle dependent, with few satellites labeled in G1, when FOP protein levels are lowest, and most labeled in G2. FOP-FGFR1, an oncogenic fusion that causes a form of leukemia called myeloproliferative neoplasm, also localizes to centriolar satellites where it increases tyrosine phosphorylation. Depletion of FOP strongly inhibits primary cilium formation in human RPE-1 cells. These results suggest that FOP is a centriolar satellite cargo protein and, as for several other satellite-associated proteins, is involved in ciliogenesis. Localization of the FOP-FGFR1 fusion kinase to centriolar satellites may be relevant to myeloproliferative neoplasm disease progression.  相似文献   

6.
Cells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and superresolved imaging, we identify a module that we term DISCO (distal centriole complex). The DISCO components CEP90, MNR, and OFD1 underlie human ciliopathies. This complex localizes to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR do not generate cilia, fail to assemble distal appendages, and do not transduce Hedgehog signals. Disrupting the satellite pools does not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critical for ciliogenesis. CEP90 recruits the most proximal known distal appendage component, CEP83, to root distal appendage formation, an early step in ciliogenesis. In addition, MNR, but not CEP90, restricts centriolar length by recruiting OFD1. We conclude that DISCO acts at the distal centriole to support ciliogenesis by restraining centriole length and assembling distal appendages, defects in which cause human ciliopathies.  相似文献   

7.
Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in unrelated fetal cases with overlapping Meckel and OFD IV syndromes and one homozygous missense mutation in a family with Joubert syndrome. By exploring roles of TCTN3 in human ciliary related functions, we found that TCTN3 is necessary for transduction of the sonic hedgehog (SHH) signaling pathway, as revealed by abnormal processing of GLI3 in patient cells. These results are consistent with the suggested role of its murine ortholog, which forms a complex at the ciliary transition zone with TCTN1 and TCTN2, both of which are also implicated in the transduction of SHH signaling. Overall, our data show the involvement of the transition zone protein TCTN3 in the regulation of the key SHH signaling pathway and that its disruption causes a severe form of ciliopathy, combining features of Meckel and OFD IV syndromes.  相似文献   

8.
Oral-facial-digital type 1 (OFD1) syndrome is an X-linked dominant condition characterized by malformations of the face, oral cavity, and digits. The responsible gene, OFD1, maps to human Xp22 and has an unknown function. We isolated and characterized the mouse Ofd1 gene and showed that it is subject to X-inactivation, in contrast to the human gene. Furthermore, we excluded a role for Ofd1 in the pathogenesis of the spontaneous mouse mutant Xpl, which had been proposed as a mouse model for this condition. Comparative sequence analysis demonstrated that OFD1 is conserved among vertebrates and absent in invertebrates. This analysis allowed the identification of evolutionarily conserved domains in the protein. Finally, we report the identification of 18 apparently nonfunctional OFD1 copies, organized in repeat units on the human Y chromosome. These degenerate OFD1-Y genes probably derived from the ancestral Y homologue of the X-linked gene. The high level of sequence identity among the different units suggests that duplication events have recently occurred during evolution.  相似文献   

9.
Autophagy is a lysosome‐dependent degradation pathway essential to maintain cellular homeostasis. Therefore, either defective or excessive autophagy may be detrimental for cells and tissues. The past decade was characterized by significant advances in molecular dissection of stimulatory autophagy inputs; however, our understanding of the mechanisms that restrain autophagy is far from complete. Here, we describe a negative feedback mechanism that limits autophagosome biogenesis based on the selective autophagy‐mediated degradation of ATG13, a component of the ULK1 autophagy initiation complex. We demonstrate that the centrosomal protein OFD1 acts as bona fide autophagy receptor for ATG13 via direct interaction with the Atg8/LC3/GABARAP family of proteins. We also show that patients with Oral‐Facial‐Digital type I syndrome, caused by mutations in the OFD1 gene, display excessive autophagy and that genetic inhibition of autophagy in a mouse model of the disease, significantly ameliorates polycystic kidney, a clinical manifestation of the disorder. Collectively, our data report the discovery of an autophagy self‐regulated mechanism and implicate dysregulated autophagy in the pathogenesis of renal cystic disease in mammals.  相似文献   

10.
11.
The tubulin cofactor C domain-containing protein TbRP2 is a basal body (centriolar) protein essential for axoneme formation in the flagellate protist Trypanosoma brucei, the causal agent of African sleeping sickness. Here, we show how TbRP2 is targeted and tethered at mature basal bodies and provide novel insight into TbRP2 function. Regarding targeting, understanding how several hundred proteins combine to build a microtubule axoneme is a fundamental challenge in eukaryotic cell biology. We show that basal body localization of TbRP2 is mediated by twinned, N-terminal TOF (TON1, OFD1, and FOP) and LisH motifs, motifs that otherwise facilitate localization of only a few conserved proteins at microtubule-organizing centers in animals, plants, and flagellate protists. Regarding TbRP2 function, there is a debate as to whether the flagellar assembly function of specialized, centriolar tubulin cofactor C domain-containing proteins is processing tubulin, the major component of axonemes, or general vesicular trafficking in a flagellum assembly context. Here we report that TbRP2 is required for the recruitment of T. brucei orthologs of MKS1 and MKS6, proteins that, in animal cells, are part of a complex that assembles at the base of the flagellum to regulate protein composition and cilium function. We also identify that TbRP2 is detected by YL1/2, an antibody classically used to detect α-tubulin. Together, these data suggest a general processing role for TbRP2 in trypanosome flagellum assembly and challenge the notion that TbRP2 functions solely in assessing tubulin “quality” prior to tubulin incorporation into the elongating axoneme.  相似文献   

12.
In a previous study, we established a system for visualizing the development of germ cells from mouse embryonic stem (ES) cells in culture using knock-in ES clones in which visual reporter genes were expressed from the mouse vasa homolog, Mvh. While assessing various culture conditions, we found that germ-cell formation was markedly depressed in low glucose medium. Using a repeated polymerase chain reaction (PCR) subtraction method, we identified genes that were differentially expressed in low versus high glucose media. Three genes that were predominantly expressed in high glucose medium, thioredoxin-interacting protein (Txnip), pituitary tumor-transforming gene 1 (Pttg), and RuvB-like protein 2 (RuvBl2), were further investigated. These genes were also found to be highly expressed in adult and embryonic gonads, and RuvBl2 in particular, which encodes an ATP-dependent DNA helicase, was specifically detected in the spermatocytes and spermatids of the adult testis as well as in primordial germ cells. Furthermore, using a green fluorescent protein (GFP) fusion construct, we found that RuvBl2 was expressed in both the nucleus and cytoplasm of testicular germ cells. These findings suggest a possible relationship between glucose metabolism and germ-cell development.  相似文献   

13.
The Meckel syndrome (MKS) complex functions at the transition zone, located between the basal body and axoneme, to regulate the localization of ciliary membrane proteins. We investigated the role of Tmem231, a two-pass transmembrane protein, in MKS complex formation and function. Consistent with a role in transition zone function, mutation of mouse Tmem231 disrupts the localization of proteins including Arl13b and Inpp5e to cilia, resulting in phenotypes characteristic of MKS such as polydactyly and kidney cysts. Tmem231 and B9d1 are essential for each other and other complex components such as Mks1 to localize to the transition zone. As in mouse, the Caenorhabditis elegans orthologue of Tmem231 localizes to and controls transition zone formation and function, suggesting an evolutionarily conserved role for Tmem231. We identified TMEM231 mutations in orofaciodigital syndrome type 3 (OFD3) and MKS patients that compromise transition zone function. Thus, Tmem231 is critical for organizing the MKS complex and controlling ciliary composition, defects in which cause OFD3 and MKS.  相似文献   

14.
Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.  相似文献   

15.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the commonest inherited human disorders yet remains relatively unknown to the wider medical, scientific and public audience. ADPKD is characterised by the development of bilateral enlarged kidneys containing multiple fluid-filled cysts and is a leading cause of end-stage renal failure (ESRF). ADPKD is caused by mutations in two genes: PKD1 and PKD2. The protein products of the PKD genes, polycystin-1 and polycystin-2, form a calcium-regulated, calcium-permeable ion channel. The polycystin complex is implicated in regulation of the cell cycle via multiple signal transduction pathways as well as the mechanosensory function of the renal primary cilium, an enigmatic cellular organelle whose role in normal physiology is still poorly understood. Defects in cilial function are now documented in several other human diseases including autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome and many animal models of polycystic kidney disease. Therapeutic trials in these animal models of polycystic kidney disease have identified several promising drugs that ameliorate disease severity. However, elucidation of the function of the polycystins and the primary cilium will have a major impact on our understanding of renal cystic diseases and will create exciting new opportunities for the design of disease-specific therapies.  相似文献   

16.
17.
Polo-like kinase (Plk1) plays a central role in regulating the cell cycle. Plk1-mediated phosphorylation is essential for centrosome maturation, and for numerous mitotic events. Although Plk1 localizes to multiple subcellular sites, a major site of action is the centrosomes, which supports mitotic functions in control of bipolar spindle formation. In G0 or G1 untransformed cells, the centriolar core of the centrosome differentiates into the basal body of the primary cilium. Primary cilia are antenna-like sensory organelles dynamically regulated during the cell cycle. Whether Plk1 has a role in ciliary biology has never been studied. Nephrocystin-1 (NPHP1) is a ciliary protein; loss of NPHP1 in humans causes nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. We here demonstrate that Plk1 colocalizes with nephrocystin-1 to the transition zone of primary cilia in epithelial cells. Plk1 co-immunoprecipitates with NPHP1, suggesting it is part of the nephrocystin protein complex. We identified a candidate Plk1 phosphorylation motif (D/E-X-S/T-φ-X-D/E) in nephrocystin-1, and demonstrated in vitro that Plk1 phosphorylates the nephrocystin N-terminus, which includes the specific PLK1 phosphorylation motif. Further, induced disassembly of primary cilia rapidly evoked Plk1 kinase activity, while small molecule inhibition of Plk1 activity or RNAi-mediated downregulation of Plk1 limited the first and second phase of ciliary disassembly. These data identify Plk1 as a novel transition zone signaling protein, suggest a function of Plk1 in cilia dynamics, and link Plk1 to the pathogenesis of NPH and potentially other cystic kidney diseases.  相似文献   

18.
We ascertained a multi-generation Malaysian family with Joubert syndrome (JS). The presence of asymptomatic obligate carrier females suggested an X-linked recessive inheritance pattern. Affected males presented with mental retardation accompanied by postaxial polydactyly and retinitis pigmentosa. Brain MRIs showed the presence of a “molar tooth sign,” which classifies this syndrome as classic JS with retinal involvement. Linkage analysis showed linkage to Xpter-Xp22.2 and a maximum LOD score of 2.06 for marker DXS8022. Mutation analysis revealed a frameshift mutation, p.K948NfsX8, in exon 21 of OFD1. In an isolated male with JS, a second frameshift mutation, p.E923KfsX3, in the same exon was identified. OFD1 has previously been associated with oral-facial-digital type 1 (OFD1) syndrome, a male-lethal X-linked dominant condition, and with X-linked recessive Simpson-Golabi-Behmel syndrome type 2 (SGBS2). In a yeast two-hybrid screen of a retinal cDNA library, we identified OFD1 as an interacting partner of the LCA5-encoded ciliary protein lebercilin. We show that X-linked recessive mutations in OFD1 reduce, but do not eliminate, the interaction with lebercilin, whereas X-linked dominant OFD1 mutations completely abolish binding to lebercilin. In addition, recessive mutations in OFD1 did not affect the pericentriolar localization of the recombinant protein in hTERT-RPE1 cells, whereas this localization was lost for dominant mutations. These findings offer a molecular explanation for the phenotypic spectrum observed for OFD1 mutations; this spectrum now includes OFD1 syndrome, SGBS2, and JS.  相似文献   

19.
The membrane of the primary cilium is continuous with the plasma membrane but compositionally distinct. Although some membrane proteins concentrate in the cilium, others such as podocalyxin/gp135 are excluded. We found that exclusion reflects a saturable selective retention mechanism. Podocalyxin is immobilized by its PDZ interaction motif binding to NHERF1 and thereby to the apical actin network via ERM family members. The retention signal was dominant, autonomous, and transferable to membrane proteins not normally excluded from the cilium. The NHERF1-binding domains of cystic fibrosis transmembrane conductance regulator and Csk-binding protein were also found to act as transferable retention signals. Addition of a retention signal could inhibit the ciliary localization of proteins (e.g., Smoothened) containing signals that normally facilitate concentration in the ciliary membrane. Proteins without a retention signal (e.g., green fluorescent protein-glycosylphosphatidylinositol) were found in the cilium, suggesting entry was not impeded by a diffusion barrier or lipid microdomain. Thus, a hierarchy of interactions controls the composition of the ciliary membrane, including selective retention, selective inclusion, and passive diffusion.  相似文献   

20.
Chang TC  Klabnik JL  Liu WS 《PloS one》2011,6(10):e26195
The OFD1 (oral-facial-digital, type 1) gene is implicated in several developmental disorders in humans. The X-linked OFD1 (OFD1X) is conserved in Eutheria. Knowledge about the Y-linked paralog (OFD1Y) is limited. In this study, we identified an OFD1Y on the bovine Y chromosome, which is expressed differentially from the bovine OFD1X. Phylogenetic analysis indicated that: a) the eutherian OFD1X and OFD1Y were derived from the pair of ancestral autosomes during sex chromosome evolution; b) the autosomal OFD1 pseudogenes, present in Catarrhini and Murinae, were derived from retropositions of OFD1X after the divergence of primates and rodents; and c) the presence of OFD1Y in the ampliconic region of the primate Y chromosome is an indication that the expansion of the ampliconic region may initiate from the X-degenerated sequence. In addition, we found that different regions of OFD1/OFD1X/OFD1Y are under differential selection pressures. The C-terminal half of OFD1 is under relaxed selection with an elevated Ka/Ks ratio and clustered positively selected sites, whereas the N-terminal half is under stronger constraints. This study provides some insights into why the OFD1X gene causes OFD1 (male-lethal X-linked dominant) and SGBS2 & JSRDs (X-linked recessive) syndromes in humans, and reveals the origin and evolution of the OFD1 family, which will facilitate further clinical investigation of the OFD1-related syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号