首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic intermediates promoted by the FLP recombinase   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
4.
Structural studies, sequence alignments, and biochemistry have provided new insights into the evolution of the purine biosynthetic pathway. The importance of chemistry, the binding of ribose 5-phosphate (common to all purine biosynthetic intermediates), and transient protein-protein interactions in channeling of chemically unstable intermediates have all been examined in the past few years.  相似文献   

5.
The current model for base excision repair (BER) involves two general sub-pathways termed single-nucleotide BER and long patch BER that are distinguished by their repair patch sizes and the enzymes/co-factors involved. Both sub-pathways involve a series of sequential steps from initiation to completion of repair. The BER sub-pathways are designed to sequester the various intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the BER intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In the present study we designed an in vitro assay to explore the question of whether there is a channeling or "hand-off" of the repair intermediates during BER in vitro. The results show that when BER enzymes are pre-bound to the initial single-nucleotide BER intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase β and then to DNA ligase. In the long patch BER subpathway, where the 5'-end of the incised strand is blocked, the intermediate after DNA polymerase β gap filling is not channeled to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.  相似文献   

6.
Yeast cytochrome c peroxidase: mechanistic studies via protein engineering   总被引:1,自引:0,他引:1  
Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme that catalyzes the reduction of hydrogen peroxide to water by ferrocytochrome c. It was the first heme enzyme to have its crystallographic structure determined and, as a consequence, has played a pivotal role in developing ideas about structural control of heme protein reactivity. Genetic engineering of the active site of CcP, along with structural, spectroscopic, and kinetic characterization of the mutant proteins has provided considerable insight into the mechanism of hydrogen peroxide activation, oxygen-oxygen bond cleavage, and formation of the higher-oxidation state intermediates in heme enzymes. The catalytic mechanism involves complex formation between cytochrome c and CcP. The cytochrome c/CcP system has been very useful in elucidating the complexities of long-range electron transfer in biological systems, including protein-protein recognition, complex formation, and intracomplex electron transfer processes.  相似文献   

7.
Small ubiquitin-like proteins (SUMO) are recently discovered post-translational modifiers that regulate protein functions and intracellular trafficking. In this study, we are describing two chemoluminescence-based assays, one for SUMOylation and another one for SUMO-mediated protein-protein interactions. These assays can be used to characterize the activity and kinetics of the enzymes that catalyze SUMOylation, and in high-throughput screening for inhibitors of SUMOylation and SUMO-dependent protein-protein interactions. These novel assays represent the most sensitive assays for ubiquitin-like systems published to date. Similar strategies can be used to develop assays for other ubiquitin-like modification systems.  相似文献   

8.
1. Particulate enzyme systems have been prepared from Staphylococcus lactis I3 which effect the synthesis of wall teichoic acid (a polymer containing a repeating unit in which d-glycerol 1-phosphate is attached to the 4-position on N-acetylglucosamine 1-phosphate) from the nucleotide precursors CDP-glycerol and UDP-N-acetylglucosamine. By using nucleotides labelled with (32)P and (14)C it has been shown that the synthesis proceeds via lipid intermediates. 2. Two intermediates have been found. In one of these N-acetylglucosamine 1-phosphate is present, whereas in the other the repeating unit of the teichoic acid occurs. 3. The simultaneous formation of the teichoic acid, a poly-(N-acetylglucosamine 1-phosphate) and an unidentified lipid, together with the poor ability of most particulate systems to synthesize polymer and the instability of the lipid intermediates themselves, have interfered with pulse-labelling experiments. Nevertheless, the biosynthetic sequence has been elucidated. It is concluded that the intermediates are derivatives of undecaprenol phosphate.  相似文献   

9.
We have so far cloned a cDNA encoding a hybrid-type histidine kinase (ATHK1), three cDNAs encoding phosphorelay intermediates (ATHP1-3), and four cDNAs encoding response regulators (ATRR1-4) from Arabidopsis thaliana. To determine which molecules constitute a His to Asp phosphorelay pathway, we examined protein-protein interactions between them using a pairwise yeast two-hybrid analysis, as an initial step. We detected a specific interaction between ATHK1 and ATHP1. We further examined protein-protein interactions between ATHP1-3 and other histidine kinases. We detected interactions between ETR1 and all ATHPs, and between CKI1 and ATHP1 or ATHP2. Interestingly, ERS1 could not interact with any ATHPs. We also examined protein-protein interactions between ATHP1-3 and ATRR1-4. The results indicated that ATHP2 could interact with ATRR4, and that ATHP3 could interact with ATRR1 or ATRR4. However, ATHP1 could not interact with any ATRRs. On the basis of these results, we discuss the possible phosphorelay networks in an Arabidopsis two-component system.  相似文献   

10.
Two sorts of inverted micellar structures have previously been proposed to explain morphological and 31P-NMR observations of bilayer systems. These structures only form in systems with components that can adopt the inverse hexagonal (HII) phase. LIP (lipidic particles) are intrabilayer structures, whereas IMI (inverted micellar intermediates) are structures that form between apposed bilayers. Here, we calculate the formation rates and half-lives of these structures to determine which (or if either) of these proposed structures is a likely explanation of the data. Calculations for the egg phosphatidylethanolamine and the Ca+-cardiolipin systems show that IMI form orders of magnitude faster than LIP, which should form slowly, if at all. This result is probably true in general, and indicates that "lipidic particle" electron micrograph images probably represent interbilayer structures, as some have previously proposed. It is shown here that IMI are likely intermediates in the lamellar----HII phase transitions and in the process of membrane fusion in some systems. The calculated formation rates, half-lives, and vesicle-vesicle fusion rates are in agreement with this observation.  相似文献   

11.
Many human diseases are the result of abnormal protein-protein interactions involving endogenous proteins, proteins from pathogens or both. The inhibition of these aberrant associations is of obvious clinical significance. Because of the diverse nature of protein-protein interactions, however, the successful design of therapeutics requires detailed knowledge of each system at a molecular and atomic level. Several recent studies have identified and/or characterised specific interactions from various disease systems, including cervical cancer, bacterial infection, leukaemia and neurodegenerative disease. A range of approaches are being developed to generate inhibitors of protein-protein interactions that may form useful therapeutics for human disease.  相似文献   

12.
The association and dissociation of protein-protein complexes play an important role in various processes in living cells. The disruption of protein-protein interactions is observed in various pathologies. The study of the nature of these interactions will contribute to a better understanding of the molecular basis of the pathogenesis of the disease and the development of new approaches to therapy. Now there is a set of methods that allow one to reveal and analyze the interaction of proteins in vitro. However, more accurate data can be obtained by studying protein-protein interactions in vivo. One of a few prospective methods is based on the effect of the complementation of fragments of reporter proteins. These reporter systems are based on the change in the fluorescent properties or enzymatic activity of the proteins that can be measured using colorimetric, fluorescent, or other substrates. The principle of the complementation is widely used to analyze protein interactions, to determine of order of interaction of protein partners in different signaling pathways, as well as in high-performance screening studies for detecting and mapping previously unknown protein-protein interactions. The possibilities of existing complementation reporter systems allow one to solve problems that are far beyond the simple registration of the interactions of two or more proteins.  相似文献   

13.
Many mRNAs in mammalian cells decay via a sequential pathway involving rapid conversion of polyadenylated molecules to a poly(A)-deficient state followed by rapid degradation of the poly(A)-deficient molecules. However, the rapidity of this latter step(s) has precluded further analyses of the decay pathways involved. Decay intermediates derived from degradation of poly(A)-deficient molecules could offer clues regarding decay pathways, but these intermediates have not been readily detected. Cell-free mRNA decay systems have proven useful in analyses of decay pathways because decay intermediates are rather stable in vitro. Cell-free systems indicate that many mRNAs decay by a sequential 3'-5' pathway because 3'-terminal decay intermediates form following deadenylation. However, if 3'-terminal, in vitro decay intermediates reflect a biologically significant aspect of mRNA turnover, then similar intermediates should be present in cells. Here, I have compared the in vivo and in vitro decay of mRNA encoded by the c-myc proto-oncogene. Its decay both in vivo and in vitro occurs by rapid removal of the poly(A) tract and generation of a 3'-terminal decay intermediate. These data strongly suggest that a 3'-5' pathway contributes to turnover of c-myc mRNA in cells. It is likely that 3'-5' decay represents a major turnover pathway in mammalian cells.  相似文献   

14.
ABSTRACT: BACKGROUND: A global map of protein-protein interactions in cellular systems provides key insights into the working of an organism. A repository of well-validated high-quality protein-protein interactions can be used in both large- and small-scale studies to generate and validate a wide range of functional hypotheses. RESULTS: We develop HINT (http://hint.yulab.org) - a database of high-quality protein-protein interactions for human, Saccharomyces cerevisiae and Schizosaccharomyces pombe. These were collected from several databases and filtered both systematically and manually to remove low-quality/erroneous interactions. The resulting datasets are classified by type (binary physical interactions vs. co-complex associations) and data source (high-throughput systematic setups vs. literature-curated small-scale experiments). We find strong sociological sampling biases in literature-curated datasets of small-scale interactions. An interactome without such sampling biases was used to understand network properties of human disease-genes - hubs are unlikely to cause disease, but if they do, they usually cause multiple disorders. CONCLUSIONS: HINT is of significant interest to researchers in all fields of biology as it addresses the ubiquitous need of having a repository of high-quality protein-protein interactions. These datasets can be utilized to generate specific hypotheses about specific proteins and/or pathways, as well as analyzing global properties of cellular networks. HINT will be regularly updated and all versions will be tracked.  相似文献   

15.
Linne U  Stein DB  Mootz HD  Marahiel MA 《Biochemistry》2003,42(17):5114-5124
We present a systematic and quantitative study of the protein-protein recognition between the three tyrocidine synthetases TycA, TycB, and TycC investigated with two artificial in trans assay systems, which had been previously developed: the "DKP assay system" for the interaction of TycA with TycB and the "L/D-Phe-L-Asn assay system" for the interaction of TycB with TycC. TycA-A(Phe)TE and TycB(3)-A(Phe)TE, which are used as donor enzymes, both provide D-Phe-S-Ppant, so that no substrate specificities interfered with the quantification of protein-protein recognition. We tested all donor/acceptor enzyme combinations between the two artificial assay systems for product formation activities as well as two hybrid enzymes, where the E-domains of TycA and TycB(3) had been exchanged against each other. Furthermore, four donor/acceptor protein fusions were constructed on gene level, resulting in dimodular proteins. We were able to show that the E-domains mediate protein-protein recognition in trans. Product formation of the different donor assayed with the two acceptor enzymes TycB(1)-CA(Pro)T and TycC(1)-CA(Asn)T/Te in trans was only obtained if the donor enzyme harbored the cognate E-domain. Interestingly, all in cis fusions (dimodular proteins) were active, giving strong evidence that unnatural protein-protein interactions can be "forced" by fusion of the distinct enzymes. Finally, we were able to detect product formation in the "DKP system" with engineered hybrid proteins where the A-domain of TycA had been exchanged against the isoleucine-activating A-domain of BacA(1) and the valine-activating A-domain of TycC(4), respectively. All of these findings are of high relevance for future NRPS engineering approaches.  相似文献   

16.
In this age of massive genetic and protein information, a fast and reliable method of studying in vivo protein-protein interactions is necessary. We have developed a novel system that can overcome limitations of existing assay methods. This new method adopts two existing systems for fast analysis of diverse protein-protein interactions. For rapid, large-scale cloning, we adopted the Gateway system and developed novel destination vectors containing YFP N-terminus (YN) or YFP C-terminus (YC) to visualize protein-protein interactions in vivo using bimolecular fluorescence complementation (BiFC). Using this system, we investigated molecular interactions among the three POZ-domain regulatory proteins mAPM-1, LRF, KLHL10 that belong to a subgroup of human POZ-domain proteins, and showed that the POZ-domains of mAPM-1, LRF and KLHL10 could form both homodimers and heterodimers. This new method is a highly efficient, sensitive and specific assay method for protein-protein interaction in vivo.  相似文献   

17.
Arginine is finding a wide range of applications in production of proteins. Arginine has been used for many years to assist protein refolding. This effect was ascribed to aggregation suppression by arginine of folding intermediates during protein refolding. Recently, we have observed that arginine facilitates elution of antibodies during Protein-A chromatography and solubilizes insoluble proteins from inclusion bodies, which both can be ascribed to weakening of protein-protein interactions. In order to gain understanding on why arginine is effective in reducing protein-protein interactions and suppressing aggregation, the effects of arginine on stability and solubility of pure proteins have been examined, which showed that arginine is not a protein-stabilizer, but is an aggregation suppressor. However, there is no explanation proposed so far on why arginine suppresses aggregation of proteins. This review addresses such question and then attempts to show differences between arginine and strong denaturants, which are also known as an aggregation suppressor.  相似文献   

18.
S E Nunes-Düby  L Matsumoto  A Landy 《Cell》1989,59(1):197-206
The early events in site-specific excisive recombination were studied with phage lambda half-att sites that have no DNA to one side of the strand exchange region; they carry a single core-type integrase binding site and either P or P' arm flanking DNA. These half-attR and half-attL sites exhibit normal properties for the initial (covalent) top-strand transfer and form stable intermediates independent of later steps in the reaction. With these novel substrates we show that Xis specifically promotes the first strand exchange and that attL enhances Int cleavage at the top-strand site of attR. It is also shown that synapsis and initial strand transfers do not require DNA-DNA pairing but are mediated by protein-protein and protein-DNA interactions. These involve the two top-strand Int binding sites (required for the first strand exchange) and, in addition, one of the two bottom-strand sites (C') responsible for the second strand exchange.  相似文献   

19.
The current "working model" for mammalian base excision repair involves two sub-pathways termed single-nucleotide base excision repair and long patch base excision repair that are distinguished by their repair patch sizes and the enzymes/co-factors involved. These base excision repair sub-pathways are designed to sequester the various DNA intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the base excision repair intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In this review, we explore the question of whether there is an actual step-to-step "hand-off" of the DNA intermediates during base excision repair in vitro. The results show that when base excision repair enzymes are pre-bound to the initial single-nucleotide base excision repair intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase beta and then to DNA ligase. In the long patch base excision repair sub-pathway, where the 5'-end of the incised strand is blocked, the intermediate after polymerase beta gap filling is not channeled from polymerase beta to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.  相似文献   

20.
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an “accessory protein” whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an “antenna protein” altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of X-ray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号