首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione biosynthesis is a key component in the network of plant stress responses that counteract oxidative damage and maintain intracellular redox environment. Using a combination of mass spectrometry and site-directed mutagenesis, we examined the response of Arabidopsis thaliana glutamate-cysteine ligase (GCL) to changes in redox environment. Mass spectrometry identified two disulfide bonds (Cys186-Cys406 and Cys349-Cys364) in GCL. Mutation of either Cys-349 or Cys-364 to a Ser reduced reaction rate by twofold, but substitution of a Ser for either Cys-186 or Cys-406 decreased activity by 20-fold and abrogated the response to changes in redox environment. Redox titrations show that the regulatory disulfide bond has a midpoint potential comparable with other known redox-responsive plant proteins. Mutation of Cys-102, Cys-251, Cys-349, or Cys-364 did not alter the response to redox environment, indicating that modulation of activity depends on the Cys186-Cys406 disulfide bond. In vivo analysis of GCL in Arabidopsis root extracts revealed that multiple oxidative stresses altered the distribution of oxidized (active) and reduced (inactive) enzyme and that this change correlated with increased GCL activity. The thiol-based regulation of GCL provides a posttranslational mechanism for modulating enzyme activity in response to in vivo redox environment and suggests a role for oxidative signaling in the maintenance of glutathione homeostasis in plants.  相似文献   

2.
The actions of insulin-like growth factors (IGFs) are modulated by a family of six high affinity binding proteins (IGFBPs 1-6). IGFBP-6 differs from other IGFBPs in having the highest affinity for IGF-II and in binding IGF-I with 20-100-fold lower affinity. IGFBPs 1-5 contain 18 conserved cysteines, but human IGFBP-6 lacks 2 of the 12 N-terminal cysteines. The complete disulfide linkages of IGFBP-6 were determined using electrospray ionization mass spectrometry of purified tryptic peptide complexes digested with combinations of chymotrypsin, thermolysin, and endoproteinase Glu-C. Numbering IGFBP-6 cysteines sequentially from the N terminus, the first three disulfide linkages are Cys1-Cys2, Cys3-Cys4, and Cys5-Cys6. The next two linkages are Cys7-Cys9 and Cys8-Cys10, which are analogous to those previously determined for IGFBP-3 and IGFBP-5. The C-terminal linkages are Cys11-Cys12, Cys13-Cys14, and Cys15-Cys16, analogous to those previously determined for IGFBP-2. Disulfide linkages of IGFBP-1 were partially determined and show that Cys1 is not linked to Cys2 and Cys3 is not linked to Cys4. Analogous with IGFBP-3, IGFBP-5, and IGFBP-6, Cys9-Cys11 and Cys10-Cys12 of IGFBP-1 are also disulfide-linked. The N-terminal linkages of IGFBP-6 differ significantly from those of IGFBP-1 (and, by implication, the other IGFBPs), which could contribute to the distinctive IGF binding properties of IGFBP-6.  相似文献   

3.
Saxatilin is a 7.7 kDa disintegrin that belongs to a family of homologous protein found in several snake venoms. Six disulfide bond locations of the disintegrin were determined by enzymatic cleavage and matrix-assisted-laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Functional implications of the disulfide bonds related to the biological activity of saxatilin were investigated with recombinant protein species produced by site-directed mutagenesis of saxatilin. Several lines of experimental evidence indicated that three disulfide bonds, Cys21-Cys35, Cys29-Cys59, and Cys47-Cys67, of the disintegrin are closely associated with its biological function such as its ability to block the binding of integrin GPIIb-IIIa and alpha(v)beta(3) with fibrinogen and extracellular matrix. Those disulfide linkages were also revealed to be important for maintaining the functional structure of the protein molecule. On the other hand, the disulfide bridges of Cys6-Cys15 and Cys8-Cys16 do not appear to be critical for the molecular structure and function of saxatilin.  相似文献   

4.
The NH(2)-terminal somatomedin B (SMB) domain (residues 1-44) of human vitronectin contains eight Cys residues organized into four disulfide bonds and is required for the binding of type 1 plasminogen activator inhibitor (PAI-1). In the present study, we map the four disulfide bonds in recombinant SMB (rSMB) and evaluate their functional importance. Active rSMB was purified from transformed Escherichia coli by immunoaffinity chromatography using a monoclonal antibody that recognizes a conformational epitope in SMB (monoclonal antibody 153). Plasmon surface resonance (BIAcore) and competitive enzyme-linked immunosorbent assays demonstrate that the purified rSMB domain and intact urea-activated vitronectin have similar PAI-1 binding activities. The individual disulfide linkages present in active rSMB were investigated by CNBr cleavage, partial reduction and S-alkylation, mass spectrometry, and protein sequencing. Two pairs of disulfide bonds at the NH(2)-terminal portion of active rSMB were identified as Cys(5)-Cys(9) and Cys(19)-Cys(21). Selective reduction/S-alkylation of these two disulfide linkages caused the complete loss of PAI-1 binding activity. The other two pairs of disulfide bonds in the COOH-terminal portion of rSMB were identified as Cys(25)-Cys(31) and Cys(32)-Cys(39) by protease-generated peptide mapping of partially reduced and S-alkylated rSMB. These results suggest a linear uncrossed pattern for the disulfide bond topology of rSMB that is distinct from the crossed pattern present in most small disulfide bond-rich proteins.  相似文献   

5.
Human antithrombin III (AT-III) was partially reduced under mild conditions in the absence or presence of low molecular weight heparin. Quantitation of reduced disulfide bonds was facilitated by the application of a water-soluble color reagent, 4-N,N-dimethylaminoazobenzene-4'-iodoacetamido-2'-sulfonic acid (S-DABIA). The study shows that the three disulfide linkages of AT-III can be sequentially reduced, with Cys8-Cys128 being the most sensitive, followed by Cys21-Cys95, while Cys247-Cys430 is the most resistant to the mild reduction conditions. The rate of reduction of Cys8-Cys128 and Cys21-Cys95 was significantly decreased in the presence of heparin. The reduction of Cys8-Cys128 was also found to correlate quantitatively with the loss of heparin-accelerated antithrombin activity, heparin binding affinity, and heparin-induced fluorescence enhancement. These results suggest that Cys8-Cys128 is required for the integrity of the heparin binding domain of AT-III and support previous findings that lysyl residues surrounding Cys128 (Lys107, Lys114, Lys125, and Lys136) constitute an important part of the heparin binding site in AT-III.  相似文献   

6.
Tissue factor (TF) is a transmembrane glycoprotein that plays distinct roles in the initiation of extrinsic coagulation cascade and thrombosis. TF contains two disulfide bonds, one each in the N-terminal and C-terminal extracellular domains. The C-domain disulfide, Cys186-Cys209, has a ?RHStaple configuration in crystal structures, suggesting that this disulfide carries high pre-stress. The redox state of this disulfide has been proposed to regulate TF encryption/decryption. Ablating the N-domain Cys49-Cys57 disulfide bond was found to increase the redox potential of the Cys186-Cys209 bond, implying an allosteric communication between the domains. Using molecular dynamics simulations, we observed that the Cys186-Cys209 disulfide bond retained the ?RHStaple configuration, whereas the Cys49-Cys57 disulfide bond fluctuated widely. The Cys186-Cys209 bond featured the typical ?RHStaple disulfide properties, such as a longer S-S bond length, larger C-S-S angles, and higher bonded prestress, in comparison to the Cys49-Cys57 bond. Force distribution analysis was used to sense the subtle structural changes upon ablating the disulfide bonds, and allowed us to identify a one-way allosteric communication mechanism from the N-terminal to the C-terminal domain. We propose a force propagation pathway using a shortest-pathway algorithm, which we suggest is a useful method for searching allosteric signal transduction pathways in proteins. As a possible explanation for the pathway being one-way, we identified a pronounced lower degree of conformational fluctuation, or effectively higher stiffness, in the N-terminal domain. Thus, the changes of the rigid domain (N-terminal domain) can induce mechanical force propagation to the soft domain (C-terminal domain), but not vice versa.  相似文献   

7.
The GA733-2 antigen is a cell surface glycoprotein highly expressed on most human gastrointestinal carcinoma and at a lower level on most normal epithelia. It is an unusual cell-cell adhesion protein that does not exhibit any obvious relationship to the four known classes of adhesion molecules. In this study, the disulfide-bonding pattern of the GA733-2 antigen was determined using matrix-assisted laser desorption/ionization mass spectrometry and N-terminal sequencing of purified tryptic peptides treated with 2-[2'-nitrophenylsulfonyl]-3-methyl-3-bromoindolenine or partially reduced and alkylated. Numbering GA733-2 cysteines sequentially from the N terminus, the first three disulfide linkages are Cys1-Cys4, Cys2-Cys6, and Cys3-Cys5, which is a novel pattern for a cysteine-rich domain instead of the expected epidermal growth factor-like disulfide structure. The next three disulfide linkages are Cys7-Cys8, Cys9-Cys10, and Cys11-Cys12, consistent with the recently determined disulfide pattern of the thyroglobulin type 1A domain of insulin-like growth factor-binding proteins 1 and 6. Analysis of glycosylation sites showed that GA733-2 antigen contained N-linked carbohydrate but that no O-linked carbohydrate groups were detected. Of the three potential N-linked glycosylation sites, Asn175 was not glycosylated, whereas Asn88 was completely glycosylated, and Asn51 was partially glycosylated. These data show that the extracellular domain of the GA733-2 antigen consists of three distinct domains; a novel cysteine-rich N-terminal domain (GA733 type 1 motif), a cysteine-rich thyroglobulin type 1A domain (GA733 type 2 motif), and a unique nonglycosylated domain without cysteines (GA733 type 3 motif).  相似文献   

8.
Goat alpha-lactalbumin (GLA) contains four tryptophan (Trp) residues and four disulfide bonds. Illumination with near-UV light results in the cleavage of disulfide bridges and in the formation of free thiols. To obtain information about the reaction products, the illuminated protein was carbamidomethylated and digested with trypsin and the peptides were analyzed by mass spectrometry. Peptides containing Cys120Cam, Cys61Cam, or Cys91Cam were detected, as well as two peptides containing a new Cys-Lys cross-link. In one, Cys6 was cross-linked to Lys122, while the cross-link in the second was either a Cys91-Lys79 or Cys73-Lys93 cross-link; however, the exact linkage could not be defined. The results demonstrate photolytic cleavage of the Cys6-Cys120, Cys61-Cys77, and Cys73-Cys91 disulfide bonds. While photolysis of Cys6-Cys120 and Cys73-Cys91 disulfide bonds in GLA has been reported, cleavage of the Cys61-Cys77 disulfide bonds has not been previously detected. To examine the contribution of the individual Trp residues, we constructed the GLA mutants, W26F, W60F, W104F, and W118F, by replacing single Trp residues with phenylalanine (Phe). The substitution of each Trp residue led to less thiol production compared to that for wild-type GLA, showing that each Trp residue in GLA contributed to the photolytic cleavage of disulfide bridges. The specificity was expressed by the nature of the reaction products. No cleavage of the Cys6-Cys120 disulfide bridge was detected when the W26F mutant was illuminated, and no cleavage of the Cys73-Cys91 disulfide bridge was seen following illumination of W26F or W104F. In contrast, Cys61Cam, resulting from the cleavage of the Cys61-Cys77 disulfide bridge, was found following illumination of any of the mutants.  相似文献   

9.
TF (tissue factor) is a transmembrane cofactor that initiates blood coagulation in mammals by binding Factor VIIa to activate Factors X and IX. The cofactor can reside in a cryptic configuration on primary cells and de-encryption may involve a redox change in the C-terminal domain Cys(186)-Cys(209) disulfide bond. The redox potential of the bond, the spacing of the reduced cysteine thiols and their oxidation by TF activators was investigated to test the involvement of the dithiol/disulfide in TF activation. A standard redox potential of -278 mV was determined for the Cys(186)-Cys(209) disulfide of recombinant soluble TF. Notably, ablating the N-terminal domain Cys(49)-Cys(57) disulfide markedly increased the redox potential of the Cys(186)-Cys(209) bond, suggesting that the N-terminal bond may be involved in the regulation of redox activity at the C-terminal bond. Using As(III) and dibromobimane as molecular rulers for closely spaced sulfur atoms, the reduced Cys(186) and Cys(209) sulfurs were found to be within 3-6 ? (1 ?=0.1 nm) of each other, which is close enough to reform the disulfide bond. HgCl2 is a very efficient activator of cellular TF and activating concentrations of HgCl2-mediated oxidation of the reduced Cys(186) and Cys(209) thiols of soluble TF. Moreover, PAO (phenylarsonous acid), which cross-links two cysteine thiols that are in close proximity, and MMTS (methyl methanethiolsulfonate), at concentrations where it oxidizes closely spaced cysteine residues to a cystine residue, were efficient activators of cellular TF. These findings further support a role for Cys(186) and Cys(209) in TF activation.  相似文献   

10.
目的:采用固相方法合成新型α4/7芋螺毒素Mr1.8(PECCTHPACHVSNPELC-NH2),并测定其折叠后的二硫键配对方式。方法:采用Fmoc-固相法合成线性肽Mr1.8,通过空气氧化折叠获得含二硫键的折叠产物,利用两步折叠法测定其二硫键连接方式。结果:Mr1.8线性肽经折叠生成2种产物Ⅰ和Ⅱ,质谱和二硫键分析结果显示Mr1.8-Ⅱ为正确折叠产物,其二硫键框架为(Cys1-Cys3,Cys2-Cys4)。结论:Mr1.8是一种新的α4/7型芋螺毒素,其一种主要折叠产物的二硫键框架为(Cys1-Cys3,Cys2-Cys4)。  相似文献   

11.
Fuc-9 is the mature form of a vacuolar alpha-L-fucosidase enzyme which seems to play an important role in plant growth regulation. Fuc-9 is a 202-residue protein containing five Cys residues located at positions 64, 109, 127, 162 and 169. In this study, the disulfide structure of Fuc-9 was determined by MALDI-TOF mass spectrometry (MS), with minimal clean-up of the samples and at a nanomolar scale. Two strategies, based on a specific chemical cleavage (with 2-nitro-5-thiocyanobenzoic acid and alkaline conditions) at the Cys residues and modification of Cys residues by acrylamide/deuterium labeled acrylamide alkylation, were used. Using these methods, the disulfide pairings Cys64-Cys109 and Cys162-Cys169 could be established. The advantages and limitations of our experimental approach are discussed.  相似文献   

12.
The disulfide arrangement of yeast derived human insulin-like growth factor I (yIGF-I) was determined using a combination of Staphylococcus aureus V8 protease mapping, fast-atom-bombardment mass spectrometry as well as amino acid sequence and composition analysis. Three disulfide bridges were found between the following cysteine residues: Cys6-Cys48, Cys47-Cys52 and Cys18-Cys61. IGF-I isolated from human plasma (pIGF-I) was found to have an identical disulfide configuration. A yeast-derived isomeric form of IGF-I (yisoIGF-I) exhibited an altered disulfide arrangement: Cys6-Cys47, Cys48-Cys52 and Cys18-Cys61. Radioreceptor analysis of pIGF-I and yIGF-I showed high specific activity, 20,000 U/mg. However, yisoIGF-I demonstrated a severely reduced ability to bind to the IGF-I receptor (19%) and was less potent in provoking a mitogenic response in Balb/C 3T3 fibroblasts (50% at doses 10-100 ng/ml). The data demonstrate the importance of correct disulfide arrangement in IGF-I for full biological activity.  相似文献   

13.
Amyloid-deposited light chain (AL) amyloidosis is correlated with the overproduction of a monoclonal immunoglobulin light chain protein by a B-lymphocyte clone. Since the amyloid fibril deposits in AL amyloidosis most often consist of the N-terminal fragments of the light chain, the majority of studies have focused on the determination of the primary structure of the protein, and reducing agents have been used routinely in the initial purification process. In this study, two light chain proteins were isolated and purified, without reduction, from the urine of a patient diagnosed with kappa 1 (kappa1) AL amyloidosis. One protein had a relative molecular mass of 12,000 and the other 24,000. Electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry, in combination with enzymatic digestions, were used to verify the amino acid sequences and identify and locate posttranslational modifications in these proteins. The 12-kDa protein was confirmed to be the N-terminal kappa1 light chain fragment (variable region) consisting of residues 1-108 or 1-109 and having one disulfide bond. The 24-kDa protein was determined to be the intact kappa1 light chain containing a cysteinyl posttranslational modification at Cys214 and disulfide bonds located at Cys23-Cys88, Cys134-Cys194, and Cys214-Cys. The methods used in this report enable high-sensitivity determination of amino acid sequence and variation in intact and truncated light chains as well as posttranslational modifications. This approach facilitates consideration of the effect of cysteinylation on the native protein structure and the potential involvement of this modification in AL amyloidosis.  相似文献   

14.
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.  相似文献   

15.
Expression of extracellular dermal glycoprotein (EDGP) is induced by biotic or abiotic stress. The amino acid sequence alignment showed that EDGP shared significant homology with proteins from legumes, tomato, Arabidopsis, wheat, and cotton. These proteins are involved in signal transduction or stress response systems. Most of the Cys residues in these proteins are conserved, suggesting that they share similar tertiary structures. Surface plasmon resonance (SPR) analysis shows that EDGP binds a soybean 4-kDa hormone-like peptide (4-kDa peptide) in vitro and reduction of EDGP decreased significantly the binding activity, implying that posttranslational modifications are important for its function. Therefore, we investigated the posttranslational modifications in EDGP using mass spectrometry. As the result, six disulfide bonds in EDGP were identified: Cys(70)-Cys(158), Cys(84)-Cys(89), Cys(97)-Cys(113), Cys(100)-Cys(108), Cys(201)-Cys(426), and Cys(332)-Cys(378). In addition, the N-terminal glutamine was cyclized into pyroglutamic acid. All four putative glycosylation sites were occupied by N-linked glycans, which have similar masses of m/z 1171. Finally, measuring the mass of the native protein showed that the posttranslational modifications of EDGP (pI 9.5) involved only disulfide bonds, N-terminal modification, and glycosylation.  相似文献   

16.
Aldose reductase (ALR2) is susceptible to oxidative inactivation by copper ion. The mechanism underlying the reversible modification of ALR2 was studied by mass spectrometry, circular dichroism, and molecular modeling approaches on the enzyme purified from bovine lens and on wild type and mutant recombinant forms of the human placental and rat lens ALR2. Two equivalents of copper ion were required to inactivate ALR2: one remained weakly bound to the oxidized protein whereas the other was strongly retained by the inactive enzyme. Cys(303) appeared to be the essential residue for enzyme inactivation, because the human C303S mutant was the only enzyme form tested that was not inactivated by copper treatment. The final products of human and bovine ALR2 oxidation contained the intramolecular disulfide bond Cys(298)-Cys(303). However, a Cys(80)-Cys(303) disulfide could also be formed. Evidence for an intramolecular rearrangement of the Cys(80)-Cys(303) disulfide to the more stable product Cys(298)-Cys(303) is provided. Molecular modeling of the holoenzyme supports the observed copper sequestration as well as the generation of the Cys(80)-Cys(303) disulfide. However, no evidence of conditions favoring the formation of the Cys(298)-Cys(303) disulfide was observed. Our proposal is that the generation of the Cys(298)-Cys(303) disulfide, either directly or by rearrangement of the Cys(80)-Cys(303) disulfide, may be induced by the release of the cofactor from ALR2 undergoing oxidation. The occurrence of a less interactive site for the cofactor would also provide the rationale for the lack of activity of the disulfide enzyme forms.  相似文献   

17.
gp130 is the common signal transducing receptor subunit for the interleukin-6-type family of cytokines. Its extracellular region (sgp130) is predicted to consist of five fibronectin type III-like domains and an NH2-terminal Ig-like domain. Domains 2 and 3 constitute the cytokine-binding region defined by a set of four conserved cysteines and a WSXWS motif, respectively. Here we determine the disulfide structure of human sgp130 by peptide mapping, in the absence and presence of reducing agent, in combination with Edman degradation and mass spectrometry. Of the 13 cysteines present, 10 form disulfide bonds, two are present as free cysteines (Cys(279) and Cys(469)), and one (Cys(397)) is modified by S-cysteinylation. Of the 11 potential N-glycosylation sites, Asn(21), Asn(61), Asn(109), Asn(135), Asn(205), Asn(357), Asn(361), Asn(531), and Asn(542) are glycosylated but not Asn(224) and Asn(368). The disulfide bonds, Cys(112)-Cys(122) and Cys(150)-Cys(160), are consistent with known cytokine-binding region motifs. Unlike granulocyte colony-stimulating factor receptor, the connectivities of the four cysteines in the NH2-terminal domain of gp130 (Cys(6)-Cys(32) and Cys(26)-Cys(81)) are consistent with known superfamily of Ig-like domains. An eight-residue loop in domain 5 is tethered by Cys(436)-Cys(444). We have created a model predicting that this loop maintains Cys(469) in a reduced form, available for ligand-induced intramolecular disulfide bond formation. Furthermore, we postulate that domain 5 may play a role in the disulfide-linked homodimerization and activation process of gp130.  相似文献   

18.
The disulfide bond structure of the extracellular domain of rat atrial natriuretic peptide (ANP) receptor (NPR-ECD) has been determined by mass spectrometry (MS) and Edman sequencing. Recombinant NPR-ECD expressed in COS-1 cells and purified from the culture medium binds ANP with as high affinity as the natural ANP receptor. Reaction with iodoacetic acid yielded no S-carboxymethylcysteine, indicating that all six Cys residues in NPR-ECD are involved in disulfide bonds. Electrospray ionization MS of NPR-ECD deglycosylated by peptide-N-glycosidase F gave a molecular mass of 48377.5+/-1.6 Da, which was consistent with the presence of three disulfide bonds. Liquid chromatography MS analysis of a lysylendopeptidase digest yielded three cystine-containing fragments with disulfide bonds Cys(60)-Cys(86), Cys(164)-Cys(213) and Cys(423)-Cys(432) based on their observed masses. These bonds were confirmed by Edman sequencing of each of the three fragments. No evidence for an inter-molecular disulfide bond was found. The six Cys residues in NPR-ECD, forming a 1-2, 3-4, 5-6 disulfide pairing pattern, are strictly conserved among A-type natriuretic peptide receptors and are similar in B-type receptors. We found that in other families of guanylate cyclase-coupled receptors, the Cys residues involved in 1-2 and 5-6 disulfide pairs are conserved in nearly all, suggesting an important contribution of these disulfide bonds to the receptor's structure and function.  相似文献   

19.
von Willebrand factor (VWF) is a multimeric glycoprotein that is required for normal hemostasis. After translocation into the endoplasmic reticulum, proVWF subunits dimerize through disulfide bonds between their C-terminal cystine knot-like (CK) domains. CK domains are characterized by six conserved cysteines. Disulfide bonds between cysteines 2 and 5 and between cysteines 3 and 6 define a ring that is penetrated by a disulfide bond between cysteines 1 and 4. Dimerization often is mediated by additional cysteines that differ among CK domain subfamilies. When expressed in a baculovirus system, recombinant VWF CK domains (residues 1957-2050) were secreted as dimers that were converted to monomers by selective reduction and alkylation of three unconserved cysteine residues: Cys(2008), Cys(2010), and Cys(2048). By partial reduction and alkylation, chemical and proteolytic digestion, mass spectrometry, and amino acid sequencing, the remaining intrachain disulfide bonds were characterized: Cys(1961)-Cys(2011) (), Cys(1987)-Cys(2041) (), Cys(1991)-Cys(2043) (), and Cys(1976)-Cys(2025). The mutation C2008A or C2010A prevented dimerization, whereas the mutation C2048A did not. Symmetry considerations and molecular modeling based on the structure of transforming growth factor-beta suggest that one or three of residues Cys(2008), Cys(2010), and Cys(2048) in each subunit mediate the covalent dimerization of proVWF.  相似文献   

20.
The primary structure determination of the dimeric invertebrate alpha(2)-macroglobulin (alpha(2)M) from Limulus polyphemus has been completed by determining its sites of glycosylation and disulfide bridge pattern. Of seven potential glycosylation sites for N-linked glycosylation, six (Asn(275), Asn(307), Asn(866), Asn(896), Asn(1089), and Asn(1145)) carry common glucosamine-based carbohydrates groups, whereas one (Asn(80)) carries a carbohydrate chain containing both glucosamine and galactosamine. Nine disulfide bridges, which are homologues with bridges in human alpha(2)M, have been identified (Cys(228)-Cys(269), Cys(456)-Cys(580), Cys(612)-Cys(799), Cys(657)-Cys(707), Cys(849)-Cys(876), Cys(874)-Cys(910), Cys(946)-Cys(1328), Cys(1104)-Cys(1155), and Cys(1362)-Cys(1475)). In addition to these bridges, Limulus alpha(2)M contains three unique bridges that connect Cys(361) and Cys(382), Cys(1370) and Cys(1374), respectively, and Cys(719) in one subunit with the same residue in the other subunit of the dimer. The latter bridge forms the only interchain disulfide bridge in Limulus alpha(2)M. The location of this bridge within the bait region is discussed and compared with other alpha-macroglobulins. Several peptides identified in the course of determining the disulfide bridge pattern provided evidence for the existence of two forms of Limulus alpha(2)M. The two forms have a high degree of sequence identity, but they differ extensively in large parts of their bait regions suggesting that they have different inhibitory spectra. The two forms (Limulus alpha(2)M-1 and -2) are most likely present in an approximately 2:1 ratio in the hemolymph of each animal, and they can be partially separated on a Mono Q column at pH 7.4 by applying a shallow gradient of NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号