首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satoh Y  Mori H  Ito K 《Biochemistry》2003,42(24):7442-7447
Although the importance of interactions involving both the cytosolic and transmembrane regions of SecY and SecE has been documented, no information has been available for the physical contact sites of these translocase subunits in their cytosolic domains. We now carried out site-specific cross-linking experiments to identify SecY and SecE regions that are physically close. Cysteines introduced into SecY residue 244 in the fourth cytosolic domain (C4) as well as into residues 354-356 and 362 in the C5 domain could be cross-linked with natural or engineered residues at positions 79 and 81 in the central part of the cytosolic loop of SecE. These cross-linkages were abolished by the Gly240 mutation in the SecY C4 region as well as by prlG alterations in SecE transmembrane segment 3, known to compromise SecY-SecE interaction. We suggest that the cytosolic and intramembrane interactions bring these two subunits together, forming a functionally crucial SecYE interface involving the SecY C5 region and the conserved cytosolic segment of SecE.  相似文献   

2.
3.
Recently, nearest neighbor patterns were observed in prokaryotic and eukaryotic DNA sequences. These are discussed with respect to some of their biological implications. It is suggested that their origins relate to different specific structures of nearest neighbor base pairs. These patterns strongly constrain the DNA sequence. As such, they "explain" to some degree the amino acid codon choice and have direct bearing on questions related to evolution.  相似文献   

4.
R J Smith  R A Capaldi 《Biochemistry》1977,16(12):2629-2633
Ubiquinone cytochrome c reductase (complex III) in detergent dispersion has been cross-linked with two reversible cross-linking agents dithiobissuccinimidylpropionate and dimethyl-3.3'-dithiobispropionimidate and the cross-linked products formed have been analyzed by two-dimensional gel electrophoresis. Under mild reaction conditions, polypeptides I and II, II and VI, I and V, and VI and VII were the most prominent subunit pairs seen. With higher levels of reagent, larger aggregates were produced until an aggregate of apparent molecular weight 310 000 was the dominant band on gels. This is the complex III monomer.  相似文献   

5.
A synthetic DNA fragment was constructed to determine the effect of 5' and 3' neighbors of guanine runs on the binding of chemical carcinogens. Determinations were made on the relative intensity of reactivity between aflatoxin B1 or benzo(a)pyrene and methylnitrosourea or 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea with various guanine positions in an endlabeled DNA fragment of known sequence. After reaction, the fragments were depurinated to produce strand breaks to allow Maxam and Gilbert sequencing for guanine positions. Relative reaction intensities were compared densitometrically. 3' neighbors exerted greater influence on carcinogen binding than did 5' neighbors, the influence extended only to the adjacent guanine and depended upon the chemical nature of the carcinogen. In addition, the presence of one carcinogen adduct in the guanine run influenced the formation of a subsequent adduct when the DNA was exposed to a second carcinogen, and this effect also depended on the nature of the second carcinogen. The results suggest that DNA adduct formation in the presence of multiple carcinogens is more complicated than an additive mechanism would suggest.  相似文献   

6.
The Sec complex forms the core of a conserved machinery transporting proteins across or into membranes. In Escherichia coli SecYEG is active as an oligomer, but the structure predicts that the protein-conducting channel is formed by the monomer. A homology model of the E.coli complex was built using the atomic structure of Methanococcus jannaschii SecYEbeta. Another structure of the membrane-bound dimer was then determined by fitting the homology model to an 8A map of SecYEG determined by electron microscopy. We found that the substrate-binding site of the dimer has opened slightly and the plug domain moved toward the outside. This new position retains the channel in a closed state. These differences partially reflect the movements that have been proposed to occur during channel gating. Further opening of the substrate-binding pocket to bind and release bound substrate and displacement of the plug during secretion, presumably rely on the action of the partner proteins. The contacts arising at the dimer interface in the environment of the lipid bilayer may have activated the assembly.  相似文献   

7.
The bacteriophage T4 regA protein (M(r) = 14,6000) is a translational repressor of a group of T4 early mRNAs. To identify a domain of regA protein that is involved in nucleic acid binding, ultraviolet light was used to photochemically cross-link regA protein to [32P]p(dT)16. The cross-linked complex was subsequently digested with trypsin, and peptides were purified using anion exchange high performance liquid chromatography. Two tryptic peptides cross-linked to [32P]p(dT)16 were isolated. Gas-phase sequencing of the major cross-linked peptide yielded the following sequence: VISXKQKHEWK, which corresponds to residues 103-113 of regA protein. Phenylalanine 106 was identified as the site of cross-linking, thus placing this residue at the interface of the regA protein-p(dT)16 complex. The minor cross-linked peptide corresponded to residues 31-41, and the site of cross-linking in the peptide was tentatively assigned to Cys-36. The nucleic acid binding domain of regA protein was further examined by chemical cleavage of regA protein into six peptides using CNBr. Peptide CN6, which extends from residue 95 to 122, retains both the ability to be cross-linked to [32P]p(dT)16 and 70% of the nonspecific binding energy of the intact protein. However, peptide CN6 does not exhibit the binding specificity of the intact protein. Three of the other individual CNBr peptides have no measurable affinity for nucleic acid, as assayed by photo-cross-linking or gel mobility shifts.  相似文献   

8.
Alice Robson 《FEBS letters》2009,583(1):207-212
A short helix in the centre of the SecY subunit serves as a ‘plug’ blocking the protein channel. This site must be vacated if the channel is to open and accommodate translocating protein. We have synthesised a peptide mimic of this plug, and show that it binds to E. coli SecYEG, identifying a distinct and peripheral binding site. We propose that during active translocation the plug moves to this second discrete site and chart its position. Deletion of the plug in SecY increases the stoichiometry of the peptide-SecYEG interaction by also exposing the location it occupies in the channel. Binding of the plug peptide to the channel is unaffected by SecA.  相似文献   

9.
SecYEG translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds the membrane-embedded SecYEG protein-conducting channel with high affinity and then drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the kinetics of nucleotide binding to SecA while associated with the SecYEG complex. Lipid-bound SecA was separated from Se-cYEG-bound SecA by sedimentation of the proteoliposomes through a glycerol cushion, which maintains the SecA native state and effectively removes the lipid-bound SecA fraction. Nucleotide binding was assessed by means of fluorescence resonance energy transfer using fluorescent ATP analogues as acceptors of the intrinsic SecA tryptophan fluorescence in the presence of a tryptophanless variant of the SecYEG complex. Binding of SecA to the SecYEG complex elevated the rate of nucleotide exchange at SecA independently of the presence of preprotein. This defines a novel pretranslocation activated state of SecA that is primed for ATP hydrolysis upon preprotein interaction.  相似文献   

10.
Cleavable Crosslinking reagents were used to study interactions among proteins of the surface coat of Trypanosoma brucei. The proteins were resolved by two-dimensional polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When intact cells were treated with dithiobis(succinimidylpropionate), we obtained extensive intermolecular Crosslinking of major variable surface coat glycoprotein (VSCG) molecules. This reagent generated no apparent crosslinks between VSCG and other membrane-associated proteins. Complete conversion to oligomers equal to or greater than octamers occurred within 20 min. When purified VSCG in solution was treated with dithiobis(succimidylpropionate), dimers were found. A complex of Cu2+ and 1,10-phenanthroline was used to catalyze air oxidation of adjacent sulfhydryls to disulfide bonds; however, no crosslinking among VSCG molecules nor between VSCG and other proteins was observed. The results presented indicate that VSCG in solution exists predominately in the form of dimers. Whether VSCG in situ also occurred as dimers could not be determined; however, since we observed trimeric and tetrameric forms of VSCG when untreated cells were analyzed, it is likely that weak interactions occur among the protein molecules. These interactions are less stable than the dimer association observed with purified VSCG. Finally, the analysis indicated that VSCGs of this stock of T. brucei, derived from UGANDA/ 60/TREU/164[ETat3], contained at least one intramolecular disulfide bond. We examined T. brucei stocks 427 and EATRO 110 and obtained similar results. Thus, it appears that intramolecular disulfide bonding is a general feature of T. brucei VSCGs.  相似文献   

11.
高猛 《生态学报》2016,36(14):4406-4414
最近邻体法是一类有效的植物空间分布格局分析方法,邻体距离的概率分布模型用于描述邻体距离的统计特征,属于常用的最近邻体法之一。然而,聚集分布格局中邻体距离(个体到个体)的概率分布模型表达式复杂,参数估计的计算量大。根据该模型期望和方差的特性,提出了一种简化的参数估计方法,并利用遗传算法来实现参数优化,结果表明遗传算法可以有效地估计的该模型的两个参数。同时,利用该模型拟合了加拿大南温哥华岛3个寒温带树种的空间分布数据,结果显示:该概率分布模型可以很好地拟合美国花旗松(P.menziesii)和西部铁杉(T.heterophylla)的邻体距离分布,但由于西北红柏(T.plicata)存在高度聚集的团簇分布,拟合结果不理想;美国花旗松在样地中近似随机分布,空间聚集参数对空间尺度的依赖性不强,但西北红柏和西部铁杉空间聚集参数具有尺度依赖性,随邻体距离阶数增加而变大。最后,讨论了该模型以及参数估计方法的优势和限制。  相似文献   

12.
13.
How kinetochore proteins form a dynamic interface with microtubules is largely unknown. In budding yeast, the 10-protein Dam1 complex is an Aurora kinase target that plays essential roles maintaining the integrity of the mitotic spindle and regulating interactions with the kinetochore. Here, we investigated the biochemical properties of purified Dam1 complex. The complex oligomerized into rings around microtubules. Ring formation was facilitated by microtubules but could occur in their absence. Mutant alleles led to partially assembled complexes or reduced microtubule binding. The interaction between rings and microtubules is mediated by the C termini of both Dam1 and alphabeta-tubulin. Ring formation promotes microtubule assembly, stabilizes against disassembly, and promotes bundling. A GTP-tubulin lattice is the preferred binding partner for the complex, and Dam1 rings can exhibit lateral mobility on microtubules. These observations suggest a mechanism by which the kinetochore can recognize and stay attached to the plus ends of microtubules.  相似文献   

14.
The bacterial ATPase SecA and protein channel complex SecYEG form the core of an essential protein translocation machinery. The nature of the conformational changes induced by each stage of the hydrolytic cycle of ATP and how they are coupled to protein translocation are not well understood. The structure of the SecA–SecYEG complex revealed a 2-helix-finger (2HF) of SecA in an ideal position to contact the substrate protein and push it through the membrane. Surprisingly, immobilization of this finger at the edge of the protein channel had no effect on translocation, whereas its imposition inside the channel blocked transport. This analysis resolves the stoichiometry of the active complex, demonstrating that after the initiation process translocation requires only one copy each of SecA and SecYEG. The results also have important implications on the mechanism of energy transduction and the power stroke driving transport. Evidently, the 2HF is not a highly mobile transducing element of polypeptide translocation.  相似文献   

15.
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

16.
Synapsin I, a major neuron-specific substrate for cAMP-dependent and Ca2+/calmodulin-dependent protein kinases, associates in in vitro assays with brain integral membrane protein site(s) distinct from secretory vesicles and with the neurofilament Mr = 68,000 subunit. The membrane sites for synapsin involve protein(s) and are likely to have physiological relevance since the binding of 125I-labeled synapsin is abolished by digestion with chymotrypsin, is displaced by unlabeled synapsin, is of high affinity (KD = 10 nM), and has a capacity (42 pmol/mg membrane protein) that is comparable to the amount of synapsin in brain, optimal binding occurs at physiological pH (6.8-7.2) and salt concentrations (50 mM), and synapsin binding to membranes is inhibited by phosphorylation with Ca2+/calmodulin-dependent protein kinase. The brain membrane protein sites for synapsin are not due to synaptic vesicles, since synaptic vesicles do not sediment under the conditions of the binding assay. Association between synapsin and the Mr = 68,000 neurofilament subunit has also been demonstrated. The binding of synapsin with the neurofilament subunit is specific since this binding interaction is saturable, with a 1:1 stoichiometry, the binding involves only certain proteolytically derived domains of synapsin, and is therefore not a simple electrostatic interaction between the basic domains of synapsin and the acidic regions in the neurofilament subunit, and Ca2+/calmodulin-dependent phosphorylation of synapsin inhibits this interaction. Synapsin promotes cross-linking of synaptic vesicles to brain membranes, and these complexes are reduced by phosphorylation of synapsin. This interconnecting function of synapsin may be a general characteristic of synapsin binding, with a membrane (synaptic vesicle or nonsecretory vesicle)-bound synapsin associating with microtubules, neurofilaments, or spectrin.  相似文献   

17.
The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.  相似文献   

18.
Chromatophore membranes isolated from the bacteriochlorophyll b-containing, photosynthetic purple nonsulfur bacterium, Rhodopseudomonas viridis, have been shown to contain a Rieske iron-sulfur protein, a cytochrome similar to cytochrome c1, and also at least one b-type cytochrome. These observations suggest the presence of a previously undetected cytochrome bc1 complex in this bacterium.  相似文献   

19.
W K Stevens  W Vranken  N Goudreau  H Xiang  P Xu  F Ni 《Biochemistry》1999,38(19):5968-5975
Most of the putative effectors for the Rho-family small GTPases Cdc42 and Rac share a common sequence motif referred to as the Cdc42/Rac interactive binding (CRIB) motif. This sequence, with a consensus of I-S-x-P-(x)2-4-F-x-H-x-x-H-V-G [Burbelo, P. D., et al. (1995) J. Biol. Chem. 270, 29071-29074], has been shown to be essential for the functional interactions between these effector proteins and Cdc42. We have characterized the interactions of a 22-residue CRIB peptide derived from human PAK2 [PAK2(71-92)] with Cdc42 using proton and heteronuclear NMR spectroscopy. This CRIB peptide binds to GTP-gammaS-loaded Cdc42 in a saturable manner, with an apparent Kd of 0.6 microM, as determined by fluorescence titration using sNBD-labeled Cdc42. Interaction of the 22-residue peptide PAK2(71-92) with GTP-gammaS-loaded Cdc42 causes resonance perturbations in the 1H-15N HSQC spectrum of Cdc42 that are similar to those observed for a longer (46-amino acid) CRIB-containing protein fragment [Guo, W., et al. (1998) Biochemistry 37, 14030-14037]. Proton NMR studies of PAK2(71-92) demonstrate structuring of PAK2(71-92) in the presence of GTP-gammaS-loaded Cdc42, through the observation of many nonsequential transferred NOEs. Structure calculations based on the observed transferred NOEs show that the central portion of the Cdc42-bound CRIB peptide assumes a loop conformation in which the side chains of consensus residues Phe80, His82, Ile84, His85, and Val86 are brought into proximity. The CRIB motif may therefore represent a minimal interfacial region in the complexes between Cdc42 and its effector proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号