首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jin XR  Abe Y  Li CY  Hamasaki N 《Biochemistry》2003,42(44):12927-12932
We have shown that diethyl pyrocarbonate (DEPC) inhibits band 3-mediated anion exchange and that the inhibition occurs only when histidine residue(s) is (are) modified with DEPC from the cytosolic surface of resealed ghosts [Izuhara et al. (1989) Biochemistry 28, 4725-4728]. In the present study, we have identified the DEPC-modified histidine residue as His834 using liquid chromatography with electrospray ionization mass spectrometry (LC/ESI-MS). This mild, rapid, sensitive, and quantitative method was successfully applied to analysis of the unstable DEPC-histidine adduct. The DEPC modification of His834 was pH dependent and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) sensitive as previously shown. After DEPC modification, band 3-mediated anion exchange is inhibited. Consistent with previous results, we confirmed that His834 was located on the cytosolic side of the membrane and the DEPC modification of His834 had allosteric effects on the extracellular DNDS-binding site of band 3. Therefore, we conclude that His834 is located at the cytosolic surface of band 3 and is an essential residue for band 3-mediated anion exchange. We will discuss important roles of the region from TM12 to TM14 in the conformational changes that occur during the band 3-mediated anion exchange.  相似文献   

2.
To determine which arginine residues are responsible for band 3-mediated anion transport, we analyzed hydroxyphenylglyoxal (HPG)-modified band 3 protein in native erythrocyte membranes. HPG-modification leads to inhibition of the transport of phosphoenolpyruvate, a substrate for band 3-mediated transport. We analyzed the HPG-modified membranes by reverse phase-HPLC, and determined that arginine 901 was modified by HPG. To determine the role of Arg 901 in the conformational change induced by anion exchange, we analyzed HPG-modification of the membranes when 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethypyrocarbonate (DEPC) was present. DNDS and DEPC fix band 3 in the outward and inward conformations, respectively. HPG-modification was unaffected in the presence of DEPC but decreased in the presence of DNDS. In addition to that, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which specifically reacts with the outward conformation of band 3, did not react with HPG-modified membranes. Furthermore, we expressed a band 3 mutant in which Arg 901 was replaced by alanine (R901A) on yeast membranes. The kinetic parameters indicated that the R901A mutation affected the rate of conformational change of the band 3 protein. From these results, we conclude that the most C-terminal arginine, Arg 901, has a functional role in the conformational change that is necessary for anion transport.  相似文献   

3.
Nine peptides derived from the transmembrane domain of band 3 were purified and sequenced. All of the sequences agreed completely with deduced sequences from cDNA of human erythroid band 3. Five peptides, KS-1 to KS-5, were released from the band 3 molecule when alkali-stripped membranes were digested with trypsin, while four other peptides, KM-6 to KM-9, were obtained following subsequent urea treatment. This indicates that at least 13 new in situ cleavage sites were demonstrable by these procedures, that the released peptides are parts of hydrophilic connector loops, and that the other peptide portions constitute membrane-spanning helices. The topological designations are consistent with the hydropathy prediction of murine band 3 according to Passow ((1986) Rev. Physiol. Biochem. Pharmacol. 103, 61-203). One mol of histidine residue was found/mole of KS-1, KS-2, KS-4, and KM-6. The conformation of band 3 in situ was apparently changed by alkali treatment of erythrocyte membranes, i.e. the amount of KS-1, KS-2, and KS-4 peptides released by trypsin treatment increased as NaOH concentration was raised from 10 to 100 mM. Similarly, [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid was found to bind to band 3 in membranes treated with 10 mM NaOH as well as to band 3 in white ghosts, but not to membranes treated with 100 mM NaOH. In addition, alkali treatment of membranes tended to increase the amount of band 3 cross-linked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The conformational change in band 3 by alkali treatment was also supported by the interaction of antibodies against peptides released by trypsin. The release of KS-1, KS-2, and KS-4 from the membrane was strongly inhibited by pretreating the erythrocyte membrane with DIDS, suggesting that the DIDS-band 3 complex which is in the outward facing form, is more compact and becomes resistant to trypsin compared to band 3 without DIDS.  相似文献   

4.
Anion exchange in human red blood cell membranes was inactivated using the impermeant carbodiimide 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide (EAC). The inactivation time course was biphasic: at 30 mM EAC, approximately 50% of the exchange capacity was inactivated within approximately 15 min; this was followed by a phase in which irreversible exchange inactivation was approximately 100-fold slower. The rate and extent of inactivation was enhanced in the presence of the nucleophile tyrosine ethyl ester (TEE), suggesting that the inactivation is the result of carboxyl group modification. Inactivation (to a maximum of 10% residual exchange activity) was also enhanced by the reversible inhibitor of anion exchange 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) at concentrations that were 10(3)-10(4) times higher than those necessary for inhibition of anion exchange. The extracellular binding site for stilbenedisulfonates is essentially intact after carbodiimide modification: the irreversible inhibitor of anion exchange 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) eliminated (most of) the residual exchange activity: DNDS inhibited the residual (DIDS-sensitive) Cl- at concentrations similar to those that inhibit Cl- exchange of unmodified membranes: and Cl- efflux is activated by extracellular Cl-, with half-maximal activation at approximately 3 mM Cl-, which is similar to the value for unmodified membranes. But the residual anion exchange function after maximum inactivation is insensitive to changes of extra- and intracellular pH between pH 5 and 7. The titratable group with a pKa of approximately 5.4, which must be deprotonated for normal function of the native anion exchanger, thus appears to be lost after EAC modification.  相似文献   

5.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents. Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a cross-linking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport, Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the noninhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control anion transport.  相似文献   

6.
This study focused on the role of sodium-bicarbonate cotransporter (NBC1) in cAMP-stimulated ion transport in porcine vas deferens epithelium. Ion substitution experiments in modified Ussing chambers revealed that cAMP-mediated stimulation was dependent on the presence of Na(+), HCO, and Cl(-) for a full response. HCO-dependent current was unaffected by acetazolamide, bumetanide, or amiloride but was inhibited by basolateral 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na(+)-driven, HCO-dependent, stilbene-inhibitable anion flux was observed across the basolateral membrane of selectively permeabilized monolayers. Results of radiotracer flux studies suggest a 4,4'-dinitrostilbene-2,2'-disulfonate-sensitive stoichiometry of 2 base equivalents per Na(+). Antibodies raised against rat kidney NBC epitopes (rkNBC; amino acids 338-391 and 928-1035) identified a single band of ~145 kDa. RT-PCR detected NBC1 message in porcine vas deferens epithelia. These results demonstrate that vas deferens epithelial cells possess the proteins necessary for the vectoral transport of HCO and that these mechanisms are maintained in primary culture. Taken together, the results indicate that vas deferens epithelia play an active role in male fertility and have implications for our understanding of the relationship between cystic fibrosis and congenital bilateral absence of the vas deferens.  相似文献   

7.
Li C  Takazaki S  Jin X  Kang D  Abe Y  Hamasaki N 《Biochemistry》2006,45(39):12117-12124
In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.  相似文献   

8.
Studies in Chinese hamster ovary cells demonstrate the presence of an anion exchanger, which has some of the properties of the band 3 transporter in erythrocytes. 1) Extracellular chloride is a competitive inhibitor of sulfate influx and stimulates sulfate efflux, suggesting that the mechanism of uptake is SO2-(4)/Cl- exchange. 2) The anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits sulfate uptake in a dose-dependent manner. Half-maximal inhibition is achieved at 0.06 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. 3) Low extracellular pH markedly stimulates sulfate uptake. A 6-fold decrease in the apparent Km is observed at pHout 5.5 as compared to pHout 7.5. However, studies carried out over a broad range of extracellular SO2-(4) concentrations indicate the presence of three components of this transport activity in Chinese hamster ovary cells: two high affinity low capacity systems, one in the range 0.5 microM less than [SO2-(4)]out less than 50 microM and one in the range 50 microM less than [SO2-(4)]out less than 150 microM, and a low affinity, high capacity system (at [SO2-(4)]out greater than 150 microM). These properties have not been previously reported for the erythroid band 3 transporter. The availability of mutants deficient in these activities has enabled us to carry out studies which suggest that the high affinity systems are functionally independent of the low affinity system, but that all systems are dependent on the same anion exchange protein. Studies in a mutant which lacks all components of the transport activity indicates that the anion exchanger may be instrumental in the regulation of the intracellular pH in Chinese hamster ovary cells.  相似文献   

9.
X B Tang  J R Casey 《Biochemistry》1999,38(44):14565-14572
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.  相似文献   

10.
A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.  相似文献   

11.
When human erythrocytes are suspended in low-Cl- media (with sucrose replacing Cl-), there is a large increase in both the net efflux and permeability of K+. A substantial portion (greater than 70% with Cl- less than 12.5 mM) of this K+ efflux is inhibited by the anion exchange inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). This inhibition cannot be explained as an effect of DIDS on net Cl- permeability (Pcl) and membrane potential, but rather represents a direct effect on the K+ permeability. When cells are reacted with DIDS for different times, the inhibition of K+ efflux parallels that of Cl- exchange, which strongly indicates that the band 3 anion exchange protein (capnophorin) mediates the net K+ flux. Since a noncompetitive inhibitor of anion exchange, niflumic acid, has no effect on net K+ efflux, the net K+ flow does not seem to involve the band 3 conformational change that mediates anion exchange. The data suggest that in low-Cl- media, the anion selectivity of capnophorin decreases so that it can act as a very low-conductivity channel for cations. Na+ and Rb+, as well as K+, can utilize this pathway.  相似文献   

12.
Phosphate entry into human erythrocytes is irreversibly inhibited by treatment of the cells with the water-soluble carbodiimides 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluene sulfonate (CMC) in the absence of added nucleophile. EDC is the more potent inhibitor (40% inhibition, 2 mM EDC, 5 min, 37 degrees C, 50% hematocrit, pH 6.9), while more than 20 mM CMC is required to give the same inhibition under identical conditions. EDC inhibition is temperature-dependent, being complete in 5 min at 37 degrees C, and sensitive to extracellular pH. At pH 6.9 only 50% of transport is rapidly inhibited by EDC, but at alkaline pH over 80% of transport is inhibited. Inhibition is not prevented by modification of membrane sulfhydryl groups but is decreased in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), a reversible competitive inhibitor of anion transport. EDC treatment leads to crosslinking of erythrocyte membrane proteins, but differences between the time course of this action and inhibition of transport indicate that most transport inhibition is not due to crosslinking of membrane proteins.  相似文献   

13.
A novel stilbene disulfonate, 4-trimethylammonium-4'-isothiocyanostilbene-2,2'-disulfonic acid (TIDS), has been chemically synthesized, and the interaction of this probe with human erythrocyte anion exchanger (AE1) was characterized. Covalent labeling of intact erythrocytes by [N(+)((14)CH(3))(3)]TIDS revealed that specific modification of AE1 was achieved only after removal of other ligand binding sites by external trypsinization. Following proteolysis, (1.2 +/- 0.4) x 10(6) TIDS binding sites per erythrocyte could be blocked by prior treatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a highly specific inhibitor of AE1. Inhibition of sulfate equilibrium exchange by TIDS in whole cells was described by a Hill coefficient of 1.10 +/- 0.06, which reduced to 0.51 +/- 0.01 following external trypsinization. The negative cooperativity of TIDS binding following external trypsinization suggests that trypsin-sensitive proteins modulate allosteric coupling between AE1 monomers. Thermodynamic analysis revealed that TIDS binding induces smaller conformational changes in AE1 than is observed following DIDS binding. The similar inhibitory potencies of both TIDS (IC(50) = 0.71 +/- 0.48 microM) and DIDS (IC(50) = 0.2 microM) imply that there is no correlation between the ability of stilbene disulfonates to arrest anion exchange function and the magnitude of ligand-induced conformational changes in AE1. Solid state (2)H NMR analysis of a [N(+)(CD(3))(3)]TIDS-AE1 complex in both unoriented and macroscopically oriented membranes revealed that large amplitude "wobbling" motions describe ligand dynamics. The data are consistent with a model where TIDS bound to AE1 is located exofacially in contact with the bulk aqueous phase.  相似文献   

14.
The paper reviews existing evidence for the participation of the protein in band 3 (nomenclature of Steck, [1]) in anion transport across the red cell membrane and discusses the possible role of common binding sites on band 3 for 1-fluoro-2,4-dinitrobenzene, 2-(4'-aminophenyl)-6-methylbenzenethiazol-3',7-disulfonic acid and dihydro 4,4'-diisothiocyanato stilbene-2,2'-disulfonic acid in the transport process.  相似文献   

15.
Chemical Modifications of Melatonin Receptors in Chicken Brain   总被引:1,自引:1,他引:0  
Abstract: The membrane-bound or solubilized melatonin receptors were treated with protein-modifying agents under specific conditions and then assayed for 125I-melatonin binding in order to obtain information on amino acids present in the ligand binding domain. The reagents specific for sulfhydryl ( N -ethylmaleimide and p -chloromercuribenzoate), guanidyl (phenylglyoxal), and amino groups (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and 1-fluoro-2,4-dinitrobenzene) inhibited 125I-melatonin binding in a dose-dependent manner, and their effects were prevented by pretreatment with cold melatonin. These results suggest the presence of cysteine, arginine, and lysine residues in the melatonin binding domain. Decreased sensitivity of 125I-melatonin binding to guanine nucleotides after N -ethylmaleimide pretreatment suggests the presence of another sulfhydryl group within the coupling domain between the receptor and G protein. Tyrosine reagents tetranitromethane, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, N -acetylimidazole, and p -nitrobenzenesulfonyl fluoride also inhibited 125I-melatonin binding, and their effects were prevented by cold melatonin pretreatment; however, they were effective only at concentrations when cross-reaction with a sulfhydryl group may occur. Histidine reagent diethyl pyrocarbonate inhibited 125I-melatonin binding in a dose-dependent manner, and its action was reversed by cold melatonin. However, diethyl pyrocarbonate had a smaller effect in a solubilized receptor preparation and, therefore, it could have modified a site remote from the ligand binding site. Our data do not suggest the presence of tryptophanyl, aspartic, or glutamic residues at the ligand binding domain.  相似文献   

16.
Stimulation of the CD3-T cell antigen receptor complex on T lymphocytes results in a rapid rise in intracellular calcium from both intra- and extracellular sources. The former is thought to be released from the endoplasmic reticulum in response to inositol trisphosphate, while the latter enters the cells through a membrane potential-sensitive transporter (Oettgen, H. C., Terhorst, C., Cantley, L. C., and Rosoff, P. M. (1985) Cell 40, 583-590). In this report we show that the stilbene disulfonate, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), inhibited the ability of monoclonal anti-CD3 complex antibodies to stimulate an influx of calcium in the human T lymphocyte cell line, Jurkat. DIDS had no effect on either antibody binding to the receptor or receptor-stimulated phosphatidylinositol turnover. The Ki was approximately 25 microM in the presence of extracellular Cl- and 10 microM when labeling was performed in the absence of Cl-, suggesting that DIDS was competing with Cl- for binding to the cell membrane. The reduced form of DIDS, dihydroDIDS, was only 50% as effective as DIDS itself, and the monoisothiocyanate stilbene, 4-acetamido-4'-isothiocyantostilbene-2,2'-disulfonic acid, was totally ineffective, even to concentrations of 0.750 mM. Removal of extracellular Cl- also inhibited the antibody-stimulated influx of calcium. These data suggest that the function of the CD3-T cell receptor-activated calcium channel/transporter may be dependent on or regulated by extracellular Cl-.  相似文献   

17.
Osmotic Swelling Stimulates Ascorbate Efflux from Cerebral Astrocytes   总被引:3,自引:2,他引:1  
Abstract: Ascorbate (reduced vitamin C) is an important enzyme cofactor, neuromodulator, and antioxidant that is stored at millimolar concentrations in the cytosol of cerebral astrocytes. Because these cells swell during hyponatremia, cerebral ischemia, and trauma, we investigated the effects of osmotic stress on astrocytic transport of ascorbate. Ascorbate efflux from primary cultures of rat astrocytes was rapidly (within 1 min) increased by incubation in hypotonic medium. Efflux also increased when astrocytes, which had been adapted to a hypertonic environment, were swollen by transfer to isotonic medium. Swelling-induced ascorbate efflux was inhibited by the anion-transport inhibitors 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). The pathway that mediates ascorbate efflux was found to be selective because a larger anion, 2',7'-bis(carboxyethyl)-5-(or -6)-carboxyfluorescein (BCECF), was retained in the swollen astrocytes. Na+-dependent ascorbate uptake into astrocytes was inhibited slightly during the first minute of hypotonic stress, indicating that the sodium ascorbate cotransporter does not mediate swelling-induced efflux. Cell concentration of authentic ascorbate was measured by HPLC with electrochemical detection. When astrocytes were incubated in ascorbate-free medium, hypotonicity decreased cell ascorbate concentration by 50% within 3 min. When astrocytes were incubated in ascorbate-supplemented hypotonic medium, intracellular ascorbate concentration was restored within 10 min because uptake remained effective. Many pathological conditions cause brain cell swelling and formation of reactive oxygen species. Ascorbate release during astrocytic swelling may contribute to cellular osmoregulation in the short-term and the scavenging of reactive oxygen species.  相似文献   

18.
The transport of FAD and its effect on disulfide bond formation was investigated in rat liver microsomal vesicles. By measuring the intravesicular FAD-accessible space, we observed that FAD permeates across the microsomal membrane and accumulates in the lumen. Rapid filtration experiments also demonstrated the uptake and efflux of the compound, which could be inhibited by atractyloside and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. FAD entering the lumen promoted the oxidation of protein thiols and increased the intraluminal oxidation of glucose-6-phosphate. These findings support the notion that, similar to yeast, free FAD may have a decisive role in the mechanism of oxidative protein folding in the endoplasmic reticulum lumen of mammalian cells.  相似文献   

19.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

20.
Murine band 3 protein was expressed in oocytes of Xenopus laevis after microinjection of the mRNA from the spleens of anemic mice. The 36Cl- efflux from the oocytes was compared with the chloride fluxes measured in murine red cells. In both oocytes and red cells, the band 3-mediated chloride transport showed the following features: the selective inhibitor of band 3-mediated anion transport, 4,4'-dinitrostilbene-2,2'-disulfonate exerts its effects only when applied to the outside and not when applied to the inside of the membrane. The K1/2 for inhibition by external 4,4'-dinitrostilbene-2,2'-disulfonate was of the order of 1.5 to 2.0 mumol/l. Flufenamate and persantine also produce similar inhibitory effects. Decreasing the pH from 7.4 to 6.0 leads to some inhibition. It is concluded that essential features of the mode of action of murine erythroid band 3 protein in the plasma membrane of the oocyte are similar to the mode of action in the bilayer of the red blood cell of the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号