首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten bacterial isolates capable of growth on tetracyanonickelate(II) [K2[Ni(CN)4]] (TCN) as the sole nitrogen source were isolated from soil, freshwater, and sewage sludge enrichments. Seven of the 10 were identified as pseudomonads, while the remaining 3 were classified as Klebsiella species. A detailed investigation of one isolate, Pseudomonas putida BCN3, revealed a rapid growth rate on TCN (generation time, 2 h), with substrate removal and growth occurring in parallel. In addition to TCN, all isolates were able to utilize KCN, although the latter was significantly more toxic; MICs ranged from 0.2 to 0.8 mM for KCN and greater than or equal to 50 mM for TCN. While growth occurred over a wide range of TCN concentrations (0.25 to 16 mM), degradation was most substantial under growth-limiting conditions and did not occur when ammonia was present. In addition, cells grown on TCN were found to accumulate nickel cyanide [Ni(CN)2] as a major biodegradation product. The results show that bacteria capable of growth on TCN can readily be isolated and that degradation (i) appears to parallel the capacity for growth on KCN, (ii) does not occur in the presence of ammonia, and (iii) proceeds via the formation of Ni(CN)2 as a biological metabolite.  相似文献   

2.
A fungus with the ability to utilize a metal-cyano compound, tetracyanonickelate (II) {K2[Ni (CN)4]; TCN}, as its sole source of nitrogen was isolated from soil and identified as Fusarium oxysporum N-10. Both intact mycelia and cell-free extract of the strain catalyzed hydrolysis of TCN to formate and ammonia and produced formamide as an intermediate, thereby indicating that a hydratase and an amidase sequentially participated in the degradation of TCN. The enzyme catalyzing the hydration of TCN was purified approximately ten-fold from the cell-free extract of strain N-10 with a yield of 29%. The molecular mass of the active enzyme was estimated to be 160 kDa. The enzyme appears to exist as a homotetramer, each subunit having a molecular mass of 40 kDa. The enzyme also catalyzed the hydration of KCN, with a cyanide-hydrating activity 2 × 104 times greater than for TCN. The kinetic parameters for TCN and KCN indicated that hydratase isolated from F. oxysporum was a cyanide hydratase able to utilize a broad range of cyano compounds and nitriles as substrates. Received: 9 August 1999 / Received revision: 13 September 1999 / Accepted: 24 September 1999  相似文献   

3.
Pseudomonas sp. strain PH1 was isolated from soil contaminated with pharmaceutical and dye industry waste. The isolate PH1 could use m-aminophenol as a sole source of carbon, nitrogen, and energy to support the growth. PH1 could degrade up to 0.32 mM m-aminophenol in 120 h, when provided as nitrogen source at 0.4 mM concentration with citrate (0.5 mM) as a carbon source in the growth medium. The presence of ammonium chloride as an additional nitrogen source repressed the degradation of m-aminophenol by PH1. To identify strain PH1, the 16S rDNA sequence was amplified by PCR using conserved eubacterial primers. The FASTA program was used to analyze the 16S rDNA sequence and the resulting homology patterns suggested that PH1 is a Pseudomonas.  相似文献   

4.
A bacterial strain capable of aerobic degradation of 4-fluorocinnamic acid (4-FCA) as the sole source of carbon and energy was isolated from a biofilm reactor operating for the treatment of 2-fluorophenol. The organism, designated as strain S2, was identified by 16S rRNA gene analysis as a member of the genus Rhodococcus. Strain S2 was able to mineralize 4-FCA as sole carbon and energy source. In the presence of a conventional carbon source (sodium acetate [SA]), growth rate of strain S2 was enhanced from 0.04 to 0.14 h?1 when the culture medium was fed with 0.5 mM of 4-FCA, and the time for complete removal of 4-FCA decreased from 216 to 50 h. When grown in SA-supplemented medium, 4-FCA concentrations up to 1 mM did not affect the length of the lag phase, and for 4-FCA concentrations up to 3 mM, strain S2 was able to completely remove the target fluorinated compound. 4-Fluorobenzoate (4-FBA) was transiently formed in the culture medium, reaching concentrations up to 1.7 mM when the cultures were supplemented with 3.5 mM of 4-FCA. Trans,trans-muconate was also transiently formed as a metabolic intermediate. Compounds with molecular mass compatible with 3-carboxymuconate and 3-oxoadipate were also detected in the culture medium. Strain S2 was able to mineralize a range of other haloorganic compounds, including 2-fluorophenol, to which the biofilm reactor had been exposed. To our knowledge, this is the first time that mineralization of 4-FCA as the sole carbon source by a single bacterial culture is reported.  相似文献   

5.
一株降氰细菌的筛选及其转化特性初步研究   总被引:7,自引:0,他引:7  
从污染土壤中分离一株高效降氰菌株DN25,经表型分析和16SrDNA分析,初步判断为产碱杆菌(Alcaligenes sp.)。该菌株耐氰能力强,能在氰浓度达1,000mg/L的环境中生长。其生长和转化的最佳温度和pH分别为30%和8.0,10h对氰浓度为500mg/L的溶液转化率可达到99%。同时菌株也可有效转化亚铁氰化钾,对于氰浓度相当于500mg/L的亚铁氰化钾液,12h的转化率可达到96%。  相似文献   

6.
With the aim to produce ascorbic acid-2-phosphate (AsA-2-P) from L-ascorbic acid (AsA, Vitamin C), nine bacteria conferring the ability to transform AsA to AsA-2-P were isolated from soil samples alongside known strains from culture collections. Most isolates were classified to the genus Brevundimonas by 16S phylogenetic analysis. Among them, Brevundimonas diminuta KACC 10306 was selected as the experimental strain because of its the highest productivity of AsA-2-P. The optimum set of conditions for the AsA-2-P production from AsA using resting cells as the source of the enzyme was also investigated. The optimum cultivation time was 16 h and the cell concentration was 120 g/l (wet weight). The optimum concentrations of AsA and pyrophosphate were 550 mM and 450 mM, respectively. The most effective buffer was 50 mM sodium formate. The optimum pH was 4.5 and temperature was 40 degrees C. Under the above conditions, 27.5 g/l of AsA-2-P was produced from AsA after 36 h of incubation, which corresponded to a 19.7% conversion efficiency based on the initial concentration of AsA.  相似文献   

7.
Gordonia terrea IIPN1 was isolated and characterized from soils collected at petroleum drilling sites. The strain was able to catabolize pyridine and 4-methylpyridine as sole carbon and nitrogen source. The strain failed to catabolize other pyridine derivatives. Growing cells completely degraded 30 mM of pyridine in 120 h with growth yield of 0.29 g g(-1). Resting Cells grown on 5 mM pyridine degraded 4-methylpyridine without a lag time and vice versa. Supplementary carbon and nitrogen source did not significantly change the specific growth rate and degradation rate by the resting cells.  相似文献   

8.
Gasoline-contaminated soil from Isfahan, Iran was selected to isolate a bacterium capable of desulfurizing dibenzothiophene (DBT). The isolated strain was named R1 and identified as Rhodococcus erythropolis through biochemical tests as well as sequencing of 16S rRNA gene. This strain could efficiently produce 2-hydroxybiphenyl (HBP) from DBT via the 4S metabolic pathway. The highest HBP amount was produced at 2 mM DBT with addition of glucose (10 g l(-1)), ethanol (3 g l(-1)), glycerol (2 g l(-1)) or succinate (10 g l(-1)) as carbon sources at pH 7. Highest respiration and growth rates were observed by microplate titration on 0.1 mM HBP, and addition of 0.2 mM HBP to glucose (1 g l(-1)) and DBT (0.3 mM) could inhibite the respiration of the isolate. The isolated strain could grow up to 0.4 mM of HBP when it is used with mineral sulfur as sole sulfur source. To the best of our knowledge this is the first report on a microtiter assay for the production and utilization of HBP by Rhodococcus.  相似文献   

9.
A strain of bacteria has been isolated which rapidly and efficiently utilizes the herbicide glyphosate (N-phosphonomethylglycine) as its sole phosphorus source in a synthetic medium. The strain (PG2982) was isolated by subculturing Pseudomonas aeruginosa ATCC 9027 in a synthetic broth medium containing glyphosate as the sole phosphorus source. Strain PG2982 differs from the culture of P. aeruginosa in that it is nonflagellated, does not produce pyocyanin, and has an absolute requirement for thiamine. Strain PG2982 has been tentatively identified as a Pseudomonas sp. strain by its biochemical activities and moles percent guanine plus cytosine. Measurements of glyphosate with an amino acid analyzer show that glyphosate rapidly disappears from the medium during exponential growth of strain PG2982. In batch culture at 30°C, this isolate completely utilized 1.0 mM glyphosate in 96 h and yielded a cell density equal to that obtained with 1.0 mM phosphate as the phosphorus source. However, a longer lag phase and greater generation time were noted in the glyphosate-containing medium. Strain PG2982 can efficiently utilize glyphosate as an alternate phosphorus source.  相似文献   

10.
There are only a few examples of microbial conversion of picric acid (2,4,6-trinitrophenol). None of the organisms that have been described previously is able to use this compound as a sole source of carbon, nitrogen, and energy at high rates. In this study we isolated and characterized a strain, strain CB 22-2, that was able to use picric acid as a sole source of carbon and energy at concentrations up to 40 mM and at rates of 1.6 mmol. h(-1). g (dry weight) of cells(-1) in continuous cultures and 920 micromol. h(-1). g (dry weight) of cells(-1) in flasks. In addition, this strain was able to use picric acid as a sole source of nitrogen at comparable rates in a nitrogen-free medium. Biochemical characterization and 16S ribosomal DNA analysis revealed that strain CB 22-2 is a Nocardioides sp. strain. High-pressure liquid chromatography and UV-visible light data, the low residual chemical oxygen demand, and the stoichiometric release of 2.9 +/- 0.1 mol of nitrite per mol of picric acid provided strong evidence that complete mineralization of picric acid occurred. During transformation, the metabolites detected in the culture supernatant were the [H-]-Meisenheimer complexes of picric acid and 2,4-dinitrophenol (H--DNP), as well as 2,4-dinitrophenol. Experiments performed with crude extracts revealed that H--DNP formation indeed is a physiologically relevant step in picric acid metabolism.  相似文献   

11.
Water treatment technologies are needed that can remove perchlorate from drinking water without introducing organic chemicals that stimulate bacterial growth in water distribution systems. Hydrogen is an ideal energy source for bacterial degradation of perchlorate as it leaves no organic residue and is sparingly soluble. We describe here the isolation of a perchlorate-respiring, hydrogen-oxidizing bacterium (Dechloromonas sp. strain HZ) that grows with carbon dioxide as sole carbon source. Strain HZ is a Gram-negative, rod-shaped facultative anaerobe that was isolated from a gas-phase anaerobic packed-bed biofilm reactor treating perchlorate-contaminated groundwater. The ability of strain HZ to grow autotrophically with carbon dioxide as the sole carbon source was confirmed by demonstrating that biomass carbon (100.9%) was derived from CO2. Chemolithotrophic growth with hydrogen was coupled with complete reduction of perchlorate (10 mM) to chloride with a maximum doubling time of 8.9 h. Strain HZ also grew using acetate as the electron donor and chlorate, nitrate, or oxygen (but not sulphate) as an electron acceptor. Phylogenetic analysis of the 16S rRNA sequence placed strain HZ in the genus Dechloromonas within the beta subgroup of the Proteobacteria. The study of this and other novel perchlorate-reducing bacteria may lead to new, safe technologies for removing perchlorate and other chemical pollutants from drinking water.  相似文献   

12.
An aerobic enrichment culture derived from a groundwater contaminated with organic and chloroorganic compounds was adapted to the transformation of 2,2'-dichlorodiisopropyl ether (DDE) in a continuous fixed-bed bioreactor. Continuous DDE removal efficiencies over 90% were achieved with a model water containing 3.3 mM methanol as co-substrate at DDE loading rates of up to 150 micromol l(-1) day(-1) with a hydraulic retention time of 24 h. In batch cultures, a stoichiometric release of 2 micromol chloride per micromol DDE transformed was observed. From the mixed culture, a strain was isolated that is able to grow on DDE as the sole energy and carbon source, tolerating DDE concentrations of up to 1 mM. Based on 16S rRNA sequencing, the strain is affiliated with the genus Rhodococcus.  相似文献   

13.
A novel dehalogenating/transhalogenating enzyme, halomethane:bisulfide/halide ion methyltransferase, has been isolated from the facultatively methylotrophic bacterium strain CC495, which uses chloromethane (CH(3)Cl) as the sole carbon source. Purification of the enzyme to homogeneity was achieved in high yield by anion-exchange chromatography and gel filtration. The methyltransferase was composed of a 67-kDa protein with a corrinoid-bound cobalt atom. The purified enzyme was inactive but was activated by preincubation with 5 mM dithiothreitol and 0.5 mM CH(3)Cl; then it catalyzed methyl transfer from CH(3)Cl, CH(3)Br, or CH(3)I to the following acceptor ions (in order of decreasing efficacy): I(-), HS(-), Cl(-), Br(-), NO(2)(-), CN(-), and SCN(-). Spectral analysis indicated that cobalt in the native enzyme existed as cob(II)alamin, which upon activation was reduced to the cob(I)alamin state and then was oxidized to methyl cob(III)alamin. During catalysis, the enzyme shuttles between the methyl cob(III)alamin and cob(I)alamin states, being alternately demethylated by the acceptor ion and remethylated by halomethane. Mechanistically the methyltransferase shows features in common with cobalamin-dependent methionine synthase from Escherichia coli. However, the failure of specific inhibitors of methionine synthase such as propyl iodide, N(2)O, and Hg(2+) to affect the methyltransferase suggests significant differences. During CH(3)Cl degradation by strain CC495, the physiological acceptor ion for the enzyme is probably HS(-), a hypothesis supported by the detection in cell extracts of methanethiol oxidase and formaldehyde dehydrogenase activities which provide a metabolic route to formate. 16S rRNA sequence analysis indicated that strain CC495 clusters with Rhizobium spp. in the alpha subdivision of the Proteobacteria and is closely related to strain IMB-1, a recently isolated CH(3)Br-degrading bacterium (T. L. Connell Hancock, A. M. Costello, M. E. Lidstrom, and R. S. Oremland, Appl. Environ. Microbiol. 64:2899-2905, 1998). The presence of this methyltransferase in bacterial populations in soil and sediments, if widespread, has important environmental implications.  相似文献   

14.
A dibenzothiophene (DBT)-degrading bacterium, Rhodococcus erythropolis D-1, which utilized DBT as a sole source of sulfur, was isolated from soil. DBT was metabolized to 2-hydroxybiphenyl (2-HBP) by the strain, and 2-HBP was almost stoichiometrically accumulated as the dead-end metabolite of DBT degradation. DBT degradation by this strain was shown to proceed as DBT → DBT sulfone → 2-HBP. DBT at an initial concentration of 0.125 mM was completely degraded within 2 days of cultivation. DBT at up to 2.2 mM was rapidly degraded by resting cells within only 150 min. It was thought this strain had a higher DBT-desulfurizing ability than other microorganisms reported previously.  相似文献   

15.
Nitrosubstituted Aromatic Compounds as Nitrogen Source for Bacteria   总被引:27,自引:14,他引:13       下载免费PDF全文
Bacteria which utilized nitroaromatic compounds (0.5 mM) as sole source of nitrogen were isolated from soil. With 2,6-dinitrophenol and succinate as carbon source, a Pseudomonas strain was isolated which liberated and assimilated nitrite. Approximately 2 mol of NO2 per mol of 2,6-dinitrophenol was released by resting cells. The xenobiotic compound was totally degraded, although specific growth yields were low even with succinate as a carbon source.  相似文献   

16.
Seven aerobic bacterial strains were isolated from pulp paper mill waste and screened for pentachlorophenol (PCP) tolerance on PCP containing mineral salt agar medium (MSM). The organism was characterized by 16S rDNA sequencing which showed 99.7% sequence similarity with Serratia marcescens. PCP degradation was routinely monitored with spectrophotometric analysis and further confirmed by HPLC analysis. Among seven strains, ITRC S7 was found to degrade up to 90.33% of 1.127 mM (300 mg/l) of PCP and simultaneous release of chloride ion (2.435 mM) emphasized the bacterial dechlorination in the medium in presence of glucose as an additional carbon and energy source under optimized condition within 168 h incubation. In absence of glucose bacterium was unable to utilize PCP indicating the phenomenon of co-metabolism. Bacterium was identified as S. marcescens (AY927692), was a novel and potential aerobic bacterial strain capable of degrading PCP in axenic condition. Further, this strain may be used for bioremediation of PCP containing pulp paper mill waste in the environment.  相似文献   

17.
Yeast strains from the genera Candida, Debaryomyces, Aureobasidium, Geotrichum, Pichia, Rhodotorula, Tremella, Hanseniaspora, and Cryptococcus were isolated from samples of a gold mine from liquid extraction circuit. These strains were tested for their ability to utilize acetonitrile at 12 mM as the sole nitrogen source. The yeasts that grew using acetonitrile at 12 mM were tested in the presence of acetonitrile, isobutyronitrile, methacrylnitrile, and propionitrile at concentrations of 12, 24, 48, 97, and 120 mM. One strain was selected for each nitrile and the concentration of nitrile in which the best growth occurred. Cryptococcus sp. strain UFMG-Y28 had a better growth on 120 mM propionitrile and 97 mM acetonitrile, Rhodotorula glutinis strain UFMG-Y5 on 48 mM methacrylnitrile, and Cryptococcus flavus strain UFMG-Y61 on 120 mM isobutyronitrile. The utilization of different nitriles and amides by yeast strains involves hydrolysis in a two-step reaction mediated by both inducible and intracellular nitrile hydratase and amidase.  相似文献   

18.
Tributyl phosphate degradation by Serratia odorifera   总被引:1,自引:0,他引:1  
Several strains from tributyl phosphate (TBP)-polluted soils were isolated and screened for their ability to degraded this widely used organophosphorus compound. The most active strain, identified as Serratia odorifera, degrades up to 600 microM TBP (initially present in the medium at 2 mM) during its growth phase, within 8 h from inoculation. However, this bacterium could not utilize TBP as the sole carbon and/or phosphorus source but nevertheless is a good candidate for bioremediation of TBP-polluted industrial sites.  相似文献   

19.
Many oral care products incorporate an antibacterial compound to prevent the formation of dental plaque which predisposes teeth to dental caries or periodontal disease []. Triclosan (TCN) is a commonly used antiplaque agent in toothpastes []. Strategies to increase the delivery efficiency of antibacterials using formulation aids such as polyamidoamine (PAMAM) dendrimers are of interest.

Solubilisation studies over the pH range 5-12 demonstrated an increase in the level of TCN solubilised with increasing dendrimer concentration (1 mM–5 mM). However, the dendrimer was unable to enhance TCN solubility at lower pH values and the solubilising effect observed was attributed to the ionization of TCN (pKa 8.14) resulting from dendrimer induced pH changes.

End group modification of G3 PAMAM dendrimer with phenylalanine in order to promote solubility through π–π stacking between TCN and the amino acid has been carried out. Phenylalanine:G3 PAMAM conjugates of different ratios (32:1, 21:1, 16:1) were synthesized. The fully conjugated dendrimer (32:1) had poor aqueous solubility, whereas the 21:1 and 16:1 dendrimer conjugates were water soluble. The 21:1 conjugate was tested for its ability to solubilise TCN, however, again there was no increase over control buffer solutions of the same pH. An alternative approach under investigation is to directly conjugate TCN to PAMAM dendrimers via a hydrolysable linkage.  相似文献   

20.
A bacterium that utilizes 2,4,6-trichlorophenol (2,4,6-TCP) as a sole source of carbon and energy was isolated from an industrial dumpsite, the bacterium designated as strain S2. Degradation was routinely monitored by observing growth analysis, chloride release assay, and ring cleavage activity and was further confirmed by gas chromatography (GC) analysis. The bacterium was found to degrade up to 90% of 2,4,6-TCP at 1.5 mM concentration. The bacteria were characterized morphologically, biochemically, and by 16S rRNA gene sequencing, which showed 99% sequence similarity with Shigella sp. This is the first report that Shigella sp. was able to degrade 2,4,6-TCP. This strain was found to be novel and a potential 2,4,6-TCP degrader. Further, this strain may be used for bioremediation of 2,4,6-TCP–containing waste in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号