首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J M Chandonia  M Karplus 《Proteins》1999,35(3):293-306
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.  相似文献   

2.
Computational neural networks have recently been used to predict the mapping between protein sequence and secondary structure. They have proven adequate for determining the first-order dependence between these two sets, but have, until now, been unable to garner higher-order information that helps determine secondary structure. By adding neural network units that detect periodicities in the input sequence, we have modestly increased the secondary structure prediction accuracy. The use of tertiary structural class causes a marked increase in accuracy. The best case prediction was 79% for the class of all-alpha proteins. A scheme for employing neural networks to validate and refine structural hypotheses is proposed. The operational difficulties of applying a learning algorithm to a dataset where sequence heterogeneity is under-represented and where local and global effects are inadequately partitioned are discussed.  相似文献   

3.
A pair of neural network-based algorithms is presented for predicting the tertiary structural class and the secondary structure of proteins. Each algorithm realizes improvements in accuracy based on information provided by the other. Structural class prediction of proteins nonhomologous to any in the training set is improved significantly, from 62.3% to 73.9%, and secondary structure prediction accuracy improves slightly, from 62.26% to 62.64%. A number of aspects of neural network optimization and testing are examined. They include network overtraining and an output filter based on a rolling average. Secondary structure prediction results vary greatly depending on the particular proteins chosen for the training and test sets; consequently, an appropriate measure of accuracy reflects the more unbiased approach of “jackknife” cross-validation (testing each protein in the database individually).  相似文献   

4.
We present an approach to predicting protein structural class that uses amino acid composition and hydrophobic pattern frequency information as input to two types of neural networks: (1) a three-layer back-propagation network and (2) a learning vector quantization network. The results of these methods are compared to those obtained from a modified Euclidean statistical clustering algorithm. The protein sequence data used to drive these algorithms consist of the normalized frequency of up to 20 amino acid types and six hydrophobic amino acid patterns. From these frequency values the structural class predictions for each protein (all-alpha, all-beta, or alpha-beta classes) are derived. Examples consisting of 64 previously classified proteins were randomly divided into multiple training (56 proteins) and test (8 proteins) sets. The best performing algorithm on the test sets was the learning vector quantization network using 17 inputs, obtaining a prediction accuracy of 80.2%. The Matthews correlation coefficients are statistically significant for all algorithms and all structural classes. The differences between algorithms are in general not statistically significant. These results show that information exists in protein primary sequences that is easily obtainable and useful for the prediction of protein structural class by neural networks as well as by standard statistical clustering algorithms.  相似文献   

5.
Using evolutionary information contained in multiple sequence alignments as input to neural networks, secondary structure can be predicted at significantly increased accuracy. Here, we extend our previous three-level system of neural networks by using additional input information derived from multiple alignments. Using a position-specific conservation weight as part of the input increases performance. Using the number of insertions and deletions reduces the tendency for overprediction and increases overall accuracy. Addition of the global amino acid content yields a further improvement, mainly in predicting structural class. The final network system has a sustained overall accuracy of 71.6% in a multiple cross-validation test on 126 unique protein chains. A test on a new set of 124 recently solved protein structures that have no significant sequence similarity to the learning set confirms the high level of accuracy. The average cross-validated accuracy for all 250 sequence-unique chains is above 72%. Using various data sets, the method is compared to alternative prediction methods, some of which also use multiple alignments: the performance advantage of the network system is at least 6 percentage points in three-state accuracy. In addition, the network estimates secondary structure content from multiple sequence alignments about as well as circular dichroism spectroscopy on a single protein and classifies 75% of the 250 proteins correctly into one of four protein structural classes. Of particular practical importance is the definition of a position-specific reliability index. For 40% of all residues the method has a sustained three-state accuracy of 88%, as high as the overall average for homology modelling. A further strength of the method is greatly increased accuracy in predicting the placement of secondary structure segments. © 1994 Wiley-Liss, Inc.  相似文献   

6.
In protein structure prediction, a central problem is defining the structure of a loop connecting 2 secondary structures. This problem frequently occurs in homology modeling, fold recognition, and in several strategies in ab initio structure prediction. In our previous work, we developed a classification database of structural motifs, ArchDB. The database contains 12,665 clustered loops in 451 structural classes with information about phi-psi angles in the loops and 1492 structural subclasses with the relative locations of the bracing secondary structures. Here we evaluate the extent to which sequence information in the loop database can be used to predict loop structure. Two sequence profiles were used, a HMM profile and a PSSM derived from PSI-BLAST. A jack-knife test was made removing homologous loops using SCOP superfamily definition and predicting afterwards against recalculated profiles that only take into account the sequence information. Two scenarios were considered: (1) prediction of structural class with application in comparative modeling and (2) prediction of structural subclass with application in fold recognition and ab initio. For the first scenario, structural class prediction was made directly over loops with X-ray secondary structure assignment, and if we consider the top 20 classes out of 451 possible classes, the best accuracy of prediction is 78.5%. In the second scenario, structural subclass prediction was made over loops using PSI-PRED (Jones, J Mol Biol 1999;292:195-202) secondary structure prediction to define loop boundaries, and if we take into account the top 20 subclasses out of 1492, the best accuracy is 46.7%. Accuracy of loop prediction was also evaluated by means of RMSD calculations.  相似文献   

7.
We demonstrate the applicability of our previously developed Bayesian probabilistic approach for predicting residue solvent accessibility to the problem of predicting secondary structure. Using only single-sequence data, this method achieves a three-state accuracy of 67% over a database of 473 non-homologous proteins. This approach is more amenable to inspection and less likely to overlearn specifics of a dataset than "black box" methods such as neural networks. It is also conceptually simpler and less computationally costly. We also introduce a novel method for representing and incorporating multiple-sequence alignment information within the prediction algorithm, achieving 72% accuracy over a dataset of 304 non-homologous proteins. This is accomplished by creating a statistical model of the evolutionarily derived correlations between patterns of amino acid substitution and local protein structure. This model consists of parameter vectors, termed "substitution schemata," which probabilistically encode the structure-based heterogeneity in the distributions of amino acid substitutions found in alignments of homologous proteins. The model is optimized for structure prediction by maximizing the mutual information between the set of schemata and the database of secondary structures. Unlike "expert heuristic" methods, this approach has been demonstrated to work well over large datasets. Unlike the opaque neural network algorithms, this approach is physicochemically intelligible. Moreover, the model optimization procedure, the formalism for predicting one-dimensional structural features and our previously developed method for tertiary structure recognition all share a common Bayesian probabilistic basis. This consistency starkly contrasts with the hybrid and ad hoc nature of methods that have dominated this field in recent years.  相似文献   

8.
闫化军  章毅 《生物信息学》2004,2(4):19-24,41
运用加入竞争层的BP网络,研究了基于蛋白质二级结构内容的域结构类预测问题.在BP网络中嵌入一竞争,层显著提高了网络预测性能.仅使用了一个小的训练集和简单的网络结构,获得了很高的预测精度自支持精度97.62%,jack-knife测试精度97.62%,及平均外推精度90.74%.在建立更完备的域结构类特征向量和更有代表性的训练集的基础上,所述方法将为蛋白质域结构分类领域提供新的分类基准.  相似文献   

9.
Kaur H  Raghava GP 《FEBS letters》2004,564(1-2):47-57
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).  相似文献   

10.
Protein eight-state secondary structure prediction is challenging, but is necessary to determine protein structure and function. Here, we report the development of a novel approach, SPSSM8, to predict eight-state secondary structures of proteins accurately from sequences based on the structural position-specific scoring matrix (SPSSM). The SPSSM has been successfully utilized to predict three-state secondary structures. Now we employ an eight-state SPSSM as a feature that is obtained from sequence structure alignment against a large database of 9 million sequences with putative structural information. The SPSSM8 uses a low sequence identity dataset (9062 entries) as a training set and conditional random field for the classification algorithm. The SPSSM8 achieved an average eight-state secondary structure accuracy (Q8) of 71.7% (Q3, 81.6%) for an independent testing set (463 entries), which had an improved accuracy of 10.1% and 4.6% compared with SSPro8 and CNF, respectively, and significantly improved the accuracy of eight-state secondary structure prediction. For CASP 9 dataset (92 entries) the SPSSM8 achieved a Q8 accuracy of 80.1% (Q3, 83.0%). The SPSSM8 was confirmed as an outstanding predictor for eight-state secondary structures of proteins. SPSSM8 is freely available at http://cal.tongji.edu.cn/SPSSM8.  相似文献   

11.
Protein backbone angle prediction with machine learning approaches   总被引:2,自引:0,他引:2  
MOTIVATION: Protein backbone torsion angle prediction provides useful local structural information that goes beyond conventional three-state (alpha, beta and coil) secondary structure predictions. Accurate prediction of protein backbone torsion angles will substantially improve modeling procedures for local structures of protein sequence segments, especially in modeling loop conformations that do not form regular structures as in alpha-helices or beta-strands. RESULTS: We have devised two novel automated methods in protein backbone conformational state prediction: one method is based on support vector machines (SVMs); the other method combines a standard feed-forward back-propagation artificial neural network (NN) with a local structure-based sequence profile database (LSBSP1). Extensive benchmark experiments demonstrate that both methods have improved the prediction accuracy rate over the previously published methods for conformation state prediction when using an alphabet of three or four states. AVAILABILITY: LSBSP1 and the NN algorithm have been implemented in PrISM.1, which is available from www.columbia.edu/~ay1/. SUPPLEMENTARY INFORMATION: Supplementary data for the SVM method can be downloaded from the Website www.cs.columbia.edu/compbio/backbone.  相似文献   

12.
A neural network-based method has been developed for the prediction of beta-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Q(pred), Q(obs), and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published beta-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach.  相似文献   

13.
Lee S  Lee BC  Kim D 《Proteins》2006,62(4):1107-1114
Knowing protein structure and inferring its function from the structure are one of the main issues of computational structural biology, and often the first step is studying protein secondary structure. There have been many attempts to predict protein secondary structure contents. Previous attempts assumed that the content of protein secondary structure can be predicted successfully using the information on the amino acid composition of a protein. Recent methods achieved remarkable prediction accuracy by using the expanded composition information. The overall average error of the most successful method is 3.4%. Here, we demonstrate that even if we only use the simple amino acid composition information alone, it is possible to improve the prediction accuracy significantly if the evolutionary information is included. The idea is motivated by the observation that evolutionarily related proteins share the similar structure. After calculating the homolog-averaged amino acid composition of a protein, which can be easily obtained from the multiple sequence alignment by running PSI-BLAST, those 20 numbers are learned by a multiple linear regression, an artificial neural network and a support vector regression. The overall average error of method by a support vector regression is 3.3%. It is remarkable that we obtain the comparable accuracy without utilizing the expanded composition information such as pair-coupled amino acid composition. This work again demonstrates that the amino acid composition is a fundamental characteristic of a protein. It is anticipated that our novel idea can be applied to many areas of protein bioinformatics where the amino acid composition information is utilized, such as subcellular localization prediction, enzyme subclass prediction, domain boundary prediction, signal sequence prediction, and prediction of unfolded segment in a protein sequence, to name a few.  相似文献   

14.
Computational model of neural network is used for prediction of secondary structure of globular proteins of known sequence. In contrast to earlier works some information about expected tertiary interactions were built in into the neural network. As a result the prediction accuracy was improved by 3% to 5%. Possible applications of this new approach are briefly discussed.  相似文献   

15.
Prediction of protein (domain) structural classes based on amino-acid index.   总被引:10,自引:0,他引:10  
A protein (domain) is usually classified into one of the following four structural classes: all-alpha, all-beta, alpha/beta and alpha + beta. In this paper, a new formulation is proposed to predict the structural class of a protein (domain) from its primary sequence. Instead of the amino-acid composition used widely in the previous structural class prediction work, the auto-correlation functions based on the profile of amino-acid index along the primary sequence of the query protein (domain) are used for the structural class prediction. Consequently, the overall predictive accuracy is remarkably improved. For the same training database consisting of 359 proteins (domains) and the same component-coupled algorithm [Chou, K.C. & Maggiora, G.M. (1998) Protein Eng. 11, 523-538], the overall predictive accuracy of the new method for the jackknife test is 5-7% higher than the accuracy based only on the amino-acid composition. The overall predictive accuracy finally obtained for the jackknife test is as high as 90.5%, implying that a significant improvement has been achieved by making full use of the information contained in the primary sequence for the class prediction. This improvement depends on the size of the training database, the auto-correlation functions selected and the amino-acid index used. We have found that the amino-acid index proposed by Oobatake and Ooi, i.e. the average nonbonded energy per residue, leads to the optimal predictive result in the case for the database sets studied in this paper. This study may be considered as an alternative step towards making the structural class prediction more practical.  相似文献   

16.
The prediction of 1D structural properties of proteins is an important step toward the prediction of protein structure and function, not only in the ab initio case but also when homology information to known structures is available. Despite this the vast majority of 1D predictors do not incorporate homology information into the prediction process. We develop a novel structural alignment method, SAMD, which we use to build alignments of putative remote homologues that we compress into templates of structural frequency profiles. We use these templates as additional input to ensembles of recursive neural networks, which we specialise for the prediction of query sequences that show only remote homology to any Protein Data Bank structure. We predict four 1D structural properties – secondary structure, relative solvent accessibility, backbone structural motifs, and contact density. Secondary structure prediction accuracy, tested by five‐fold cross‐validation on a large set of proteins allowing less than 25% sequence identity between training and test set and query sequences and templates, exceeds 82%, outperforming its ab initio counterpart, other state‐of‐the‐art secondary structure predictors (Jpred 3 and PSIPRED) and two other systems based on PSI‐BLAST and COMPASS templates. We show that structural information from homologues improves prediction accuracy well beyond the Twilight Zone of sequence similarity, even below 5% sequence identity, for all four structural properties. Significant improvement over the extraction of structural information directly from PDB templates suggests that the combination of sequence and template information is more informative than templates alone. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Zp curve, a three-dimensional space curve representation of protein primary sequence based on the hydrophobicity and charged properties of amino acid residues along the primary sequence is suggested. Relying on the Zp parameters extracted from the three components of the Zp curve and the Bayes discriminant algorithm, the subcellular locations of prokaryotic proteins were predicted. Consequently, an accuracy of 81.5% in the cross-validation test has been achieved using 13 parameters extracted from the curve for the database of 997 prokaryotic proteins. The result is slightly better than that of using the neural network method (80.9%) based on the amino acid composition for the same database. By jointing the amino acid composition and the Zp parameters, the overall predictive accuracy 89.6% can be achieved. It is about 3% higher than that of the Bayes discriminant algorithm based merely on the amino acid composition for the same database. The prediction is also performed with a larger dataset derived from the version 39 SWISS-PROT databank and two datasets with different sequence similarity. Even for the dataset of non-sequence similarity, the improvement can be of 4.4% in the cross-validation test. The results indicate that the Zp parameters are effective in representing the information within a protein primary sequence. The method of extracting information from the primary structure may be useful for other areas of protein studies.  相似文献   

18.
Accuracy of predicting protein secondary structure and solvent accessibility from sequence information has been improved significantly by using information contained in multiple sequence alignments as input to a neural 'network system. For the Asilomar meeting, predictions for 13 proteins were generated automatically using the publicly available prediction method PHD. The results confirm the estimate of 72% three-state prediction accuracy. The fairly accurate predictions of secondary structure segments made the tool useful as a starting point for modeling of higher dimensional aspects of protein structure. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Kaleel  Manaz  Torrisi  Mirko  Mooney  Catherine  Pollastri  Gianluca 《Amino acids》2019,51(9):1289-1296

Predicting the three-dimensional structure of proteins is a long-standing challenge of computational biology, as the structure (or lack of a rigid structure) is well known to determine a protein’s function. Predicting relative solvent accessibility (RSA) of amino acids within a protein is a significant step towards resolving the protein structure prediction challenge especially in cases in which structural information about a protein is not available by homology transfer. Today, arguably the core of the most powerful prediction methods for predicting RSA and other structural features of proteins is some form of deep learning, and all the state-of-the-art protein structure prediction tools rely on some machine learning algorithm. In this article we present a deep neural network architecture composed of stacks of bidirectional recurrent neural networks and convolutional layers which is capable of mining information from long-range interactions within a protein sequence and apply it to the prediction of protein RSA using a novel encoding method that we shall call “clipped”. The final system we present, PaleAle 5.0, which is available as a public server, predicts RSA into two, three and four classes at an accuracy exceeding 80% in two classes, surpassing the performances of all the other predictors we have benchmarked.

  相似文献   

20.
Cuff JA  Barton GJ 《Proteins》2000,40(3):502-511
The effect of training a neural network secondary structure prediction algorithm with different types of multiple sequence alignment profiles derived from the same sequences, is shown to provide a range of accuracy from 70.5% to 76.4%. The best accuracy of 76.4% (standard deviation 8.4%), is 3.1% (Q(3)) and 4.4% (SOV2) better than the PHD algorithm run on the same set of 406 sequence non-redundant proteins that were not used to train either method. Residues predicted by the new method with a confidence value of 5 or greater, have an average Q(3) accuracy of 84%, and cover 68% of the residues. Relative solvent accessibility based on a two state model, for 25, 5, and 0% accessibility are predicted at 76.2, 79.8, and 86. 6% accuracy respectively. The source of the improvements obtained from training with different representations of the same alignment data are described in detail. The new Jnet prediction method resulting from this study is available in the Jpred secondary structure prediction server, and as a stand-alone computer program from: http://barton.ebi.ac.uk/. Proteins 2000;40:502-511.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号