首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wee1 is a protein kinase that negatively regulates mitotic entry in G2 phase by suppressing cyclin B-Cdc2 activity, but its spatiotemporal regulations remain to be elucidated. We observe the dynamic behavior of Wee1 in Schizosaccharomyces pombe cells and manipulate its localization and kinase activity to study its function. At late G2, nuclear Wee1 efficiently suppresses cyclin B-Cdc2 around the spindle pole body (SPB). During the G2/M transition when cyclin B-Cdc2 is highly enriched at the SPB, Wee1 temporally accumulates at the nuclear face of the SPB in a cyclin B-Cdc2-dependent manner and locally suppresses both cyclin B-Cdc2 activity and spindle assembly to counteract a Polo kinase-dependent positive feedback loop. Then Wee1 disappears from the SPB during spindle assembly. We propose that regulation of Wee1 localization around the SPB during the G2/M transition is important for proper mitotic entry and progression.  相似文献   

2.
Xenopus oocytes were stained by anti-tubulin and anti-MAP1 antibodies during the first meiotic cell division. In the prophase-blocked oocytes, only few microtubules are present around the upper part of the nuclear envelope. These microtubules are resistant to cold, calcium and antimitotic drug treatments. At this stage, monoclonal anti-MAP1 antibody and polyclonal anti-centrosome antibody reveal punctate staining of the nucleus and nucleoli. During the progesterone-induced maturation, a microtubular network appears at the basal part of the disrupting nucleus. Anti-MAP1 and anti-centrosome antibodies stain a dense layer at the basal part of this microtubular array. Microtubules present in this array are cold, calcium- and antimitotic drug sensitive. Anti-MAP1 and anti-tubulin antibodies stain the whole metaphase II spindle, whereas only the poles of the metaphase II spindle are stained by the anti-centrosome antibody.  相似文献   

3.
Although the regulatory network of G2/M phase transition has been intensively studied in mammalian cell lines, the identification of morphological and molecular markers to identify G2/M phase transition in vivo remains elusive. In this study, we found no obvious morphological changes between the S phase and G2 phase in mice intestinal epithelial cells. The G2 phase could be identified by Brdu incorporation resistance, marginal and scattered foci of histone H3 phosphorylated at Ser10 (pHH3), and relatively intact Golgi ribbon. Prophase starts with nuclear transformation in situ, which was identified by a series of prophase markers including nuclear translocation of cyclinB1, fragmentation of the Golgi complex, and a significant increase in pHH3. The nucleus started to move upwards in the late prophase and finally rounded up at the apical surface. Then, metaphase was initiated as the level of pHH3 peaked. During anaphase and telophase, pHH3 sharply decreased, while Ki67 was obviously bound to chromosomes, and PCNA was distributed throughout the whole cell. Based on the aforementioned markers and Brdu pulse labeling, it was estimated to take about one hour for most crypt cells to go through the G2 phase and about two hours to go through the G2-M phase. It took much longer for crypt base columnar (CBC) stem cells to undergo G2-prophase than rapid transit amplifying cells. In summary, a series of sequentially presenting markers could be used to indicate the progress of G2/M events in intestinal epithelial cells and other epithelial systems in vivo.  相似文献   

4.
Control of the G2/M transition   总被引:5,自引:0,他引:5  
  相似文献   

5.
Activating mutations of RAS are prevalent in thyroid follicular neoplasms, which commonly have chromosomal losses and gains. In thyroid cells, acute expression of HRAS(V12) increases the frequency of chromosomal abnormalities within one or two cell cycles, suggesting that RAS oncoproteins may interfere with cell cycle checkpoints required for maintenance of a stable genome. To explore this, PCCL3 thyroid cells with conditional expression of HRAS(V12) or HRAS(V12) effector mutants were presynchronized at the G(1)/S boundary, followed by activation of expression of RAS mutants and release from the cell cycle block. Expression of HRAS(V12) accelerated the G(2)/M phase by approximately 4 h and promoted bypass of the G(2) DNA damage and mitotic spindle checkpoints. Accelerated passage through G(2)/M and bypass of the G(2) DNA damage checkpoint, but not bypass of the mitotic spindle checkpoint, required activation of mitogen-activated protein kinase (MAPK). However, selective activation of the MAPK pathway was not sufficient to disrupt the G(2) DNA damage checkpoint, because cells arrested appropriately in G(2) despite conditional expression of HRAS(V12,S35) or BRAF(V600E). By contrast to the MAPK requirement for radiation-induced G(2) arrest, RAS-induced bypass of the mitotic spindle checkpoint was not prevented by pretreatment with MEK inhibitors. These data support a direct role for the MAPK pathway in control of G(2) progression and regulation of the G(2) DNA damage checkpoint. We propose that oncogenic RAS activation may predispose cells to genomic instability through both MAPK-dependent and independent pathways that affect critical checkpoints in G(2)/M.  相似文献   

6.
The mammalian Golgi apparatus is organized in the form of a ribbon‐like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be “unlinked” into isolated stacks to allow progression into mitosis. Here we show that the Golgi‐associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK‐mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.  相似文献   

7.
Incubation of demembranated sperm chromatin in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in nuclear envelope assembly, chromosome decondensation, and sperm pronuclear formation. In contrast, egg extracts made with EGTA-containing buffers induced the sperm chromatin to form chromosomes or irregularly shaped clumps of chromatin that were incorporated into bipolar or multipolar spindles. The 150,000 g supernatants of the EGTA extracts could not alone support these changes in incubated nuclei. However, these supernatants induced not only chromosome condensation and spindle formation, but also nuclear envelope breakdown when added to sperm pronuclei or isolated Xenopus liver or brain nuclei that were incubated in extracts made without EGTA. Similar changes were induced by partially purified preparations of maturation-promoting factor. The addition of calcium chloride to extracts containing condensed chromosomes and spindles caused dissolution of the spindles, decondensation of the chromosomes, and re-formation of interphase nuclei. These results indicate that nuclear envelope breakdown, chromosome condensation, and spindle assembly, as well as the regulation of these processes by Ca2+-sensitive cytoplasmic components, can be studied in vitro using extracts of amphibian eggs.  相似文献   

8.
9.
Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.  相似文献   

10.
In the marine heliozoan Actinocoryne contractilis, uninterrupted rods of microtubules stiffen the axopodia and the stalk. Stimulation in sea water elicits an extremely fast contraction (millisecond range) accompanied by almost complete Mt dissociation. Using high-speed cinematography and light transmittance measurements, we have studied the process of Mt disassembly in real time. In sea water, Mt disassembly follows an exponential decrease (mean half time of 4 ms) or proceeds by short steps. Cell contraction and Mt disassembly have been inhibited or slowed down through the use of artificial media. Although kinetics are slower (mean half time of 3 s), the curves of the length change against time look similar. The rapid as well as the slower process are accompanied by the formation of breakpoints on the stalk, from which disassembly proceeds. In specimens fixed during the slowed contraction, the presence across the Mt rods, of a single or multiple destabilization band that may consist of granular material and polymorphic forms of tubulin supports the hypothesis of "intercalary destabilization and breakdown" of axonemal Mts.  相似文献   

11.
The cysteine protease separase triggers anaphase onset by cleaving chromosome-bound cohesin. In humans, separase also cleaves itself at multiple sites, but the biological significance of this reaction has been elusive. Here we show that preventing separase auto-cleavage, via targeted mutagenesis of the endogenous hSeparase locus in somatic cells, interferes with entry into and progression through mitosis. The initial delay in mitotic entry was not dependent on the G2 DNA damage checkpoint, but rather involved improper stabilization of the mitosis-inhibiting kinase Wee1. During M phase, cells deficient in separase auto-cleavage exhibited striking defects in spindle assembly and metaphase chromosome alignment, revealing an additional early mitotic function for separase. Both the G2 and M phase phenotypes could be recapitulated by separase RNA interference and corrected by re-expressing wild-type separase in trans. We conclude that separase auto-cleavage coordinates multiple aspects of the G2/M programme in human cells, thus contributing to the timing and efficiency of chromosome segregation.  相似文献   

12.
13.
The origin of cortical microtubules (CMTs) was investigated in transgenic BY-2 cells stably expressing a GFP (green fluorescent protein) -tubulin fusion protein (BY-GT16). In a previous study, we found that CMTs were initially organized in the perinuclear regions but then elongated to reach the cell cortex where they formed bright spots, and that the appearance of parallel MTs from the bright spots was followed by the appearance of transverse MTs (Kumagai et al., Plant Cell Physiol. 42, 723-732, 2001). In this study, we investigated the migration of tubulin to the reorganization sites of CMTs at the M/G1 interface. After synchronization of the BY-GT16 cells by aphidicolin, the localization of GFP-tubulin was monitored and analyzed by deconvolution microscopy. GFP-tubulin was found to accumulate on the nuclear surface near the cell plate at the final stage of phragmoplast collapse. Subsequently, GFP-tubulin accumulated again on the nuclear surface opposite the cell plate, where nascent MTs elongated to the cell cortex. The significance of these observations on the mode of CMT organization is discussed.  相似文献   

14.
Citron Kinase (Citron-K) is a cell cycle-dependent protein regulating the G(2)/M transition in hepatocytes. Synchronization studies demonstrated that expression of the Citron-K protein starts at the late S and/or the early G(2) phase after that of cyclin B1. Expression of Citron-K is developmentally regulated. Levels of Citron-K mRNA and protein are highest in embryonic liver and gradually decrease after birth. Citron-K exists in interphase nuclei and begins to disperse into the cytoplasm at prophase. It concentrates at the cleavage furrow and midbody during anaphase, telophase, and cytokinesis, implicating a role in the control of cytokinesis. However, studies with knockouts show that Citron-K is not essential for cytokinesis in hepatocytes. Instead, loss of Citron-K causes a significant increase of G(2) tetraploid nuclei in one-week-old rat and mouse liver. In addition, Citron-K deficiency triggers apoptosis in a small subset of embryonic liver cells. In summary, our data demonstrate that Citron-K has a distinct cell cycle-dependent expression pattern and cellular localization as a downstream target of Rho-GTPase and functions in the control of G(2)/M transition in the hepatocyte cell cycle.  相似文献   

15.
Xenopus oocyte maturation is analogous to G2/M transition and characterized by germinal vesicle breakdown (GVBD), spindle formation, activation of MPF and Mos-Xp42(Mpk1) pathways. It is accompanied prior to GVBD by a transient increase in intracellular pH. We determined that a well known acidifying compound, NH(4)Cl, delayed progesterone-induced GVBD in a dose-dependent manner. GVBD(50) was delayed up to 2.3-fold by 10 mM NH(4)Cl. Cyclin B2 phosphorylation, Cdk1 Tyr15 dephosphorylation as well as p39(Mos) accumulation, Xp42(Mpk1) and p90(Rsk) phosphorylation induced by progesterone were also delayed by incubation of oocyte in NH(4)Cl. The delay induced by NH(4)Cl was prevented by injection of MOPS buffer pH 7.7. In contrast to acidifying medium, alkalyzing treatment such as Tris buffer pH 9 injections, accelerated GVBD, MPF and Xp42(Mpk1) activation, indicating that pHi changes control early steps of G2/M dynamics. When injected in an immature recipient oocyte, egg cytoplasm triggers GVBD through MPF auto-amplification, independently of protein synthesis. In these conditions, GVBD and Xp42(Mpk1) activation were delayed by high concentration of NH(4)Cl, which never prevented or delayed MPF activation. Strickingly, NH(4)Cl strongly inhibited thiophosphorylated active MAPK-induced GVBD and MPF activation. Nevertheless, Tris pH 9 did not have any effects on egg cytoplasm- or active MAPK-induced GVBD. Taken together, our results suggest that dynamic of early events driving Xp42(Mpk1) and MPF activation induced by progesterone may be negatively or positively regulated by pH(i) changes. However Xp42(Mpk1) pathway was inhibited by acidification alone. Finally, MPF auto-amplification loop was not sensitive to pH(i) changes.  相似文献   

16.
Regulation of maturation in meiotically competent mammalian oocytes is a complex process involving the carefully coordinated exchange of signals between the somatic and germ cell compartments of the ovarian follicle via paracrine and cell–cell coupling pathways. This review highlights recent advances in our understanding of how such signaling controls both meiotic arrest and gonadotropin‐triggered meiotic resumption in competent oocytes and relates them to the historical context. Emphasis will be on rodent systems, where many of these new findings have taken place. A regulatory scheme is then proposed that integrates this information into an overall framework for meiotic regulation that demonstrates the complex interplay between different follicular compartments. Mol. Reprod. Dev. 77: 566–585, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.  相似文献   

19.
Speedy: a novel cell cycle regulator of the G2/M transition   总被引:1,自引:0,他引:1       下载免费PDF全文
Stage VI Xenopus oocytes are suspended at the G2/M transition of meiosis I, and represent an excellent system for the identification and examination of cell cycle regulatory proteins. Essential cell cycle regulators such as MAPK, cyclins and mos have the ability to induce oocyte maturation, causing the resumption of the cell cycle from its arrested state. We have identified the product of a novel Xenopus gene, Speedy or Spy1, which is able to induce rapid maturation of Xenopus oocytes, resulting in the induction of germinal vesicle breakdown (GVBD) and activation of M-phasepromoting factor (MPF). Spy1 activates the MAPK pathway in oocytes, and its ability to induce maturation is dependent upon this pathway. Spy1-induced maturation occurs much more rapidly than maturation induced by other cell cycle regulators including progesterone, mos or Ras, and does not require any of these proteins or hormones, indicating that Spy1-induced maturation proceeds through a novel regulatory pathway. In addition, we have shown that Spy1 physically interacts with cdk2, and prematurely activates cdk2 kinase activity. Spy1 therefore represents a novel cell cycle regulatory protein, inducing maturation through the activation of MAPK and MPF, and also leading to the premature activation of cdk2.  相似文献   

20.
The mitotic spindle contains several classes of microtubules (MTs) whose lengths change independently during mitosis. Precise control over MT polymerization and depolymerization during spindle formation, anaphase chromosome movements, and spindle breakdown is necessary for successful cell division. This model proposes the site of addition and removal of MT subunits in each of four classes of spindle MTs at different stages of mitosis, and suggests how this addition and removal is controlled. We propose that spindle poles and kinetochores significantly alter the assembly-disassembly kinetics of associated MT ends. Control of MT length is further modulated by localized forces affecting assembly and disassembly kinetics of individual sets of MTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号