首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein tyrosine phosphatase-like IA-2 autoantigen is one of the major targets of humoral autoimmunity in patients with insulin-dependant diabetes mellitus (IDDM). In an effort to define the epitopes recognized by autoantibodies against IA-2, we generated five human mAbs (hAbs) from peripheral B lymphocytes isolated from patients most of whom had been recently diagnosed for IDDM. Determination and fine mapping of the critical regions for autoantibody binding was performed by RIA using mutant and chimeric constructs of IA-2- and IA-2beta-regions. Four of the five IgG autoantibodies recognized distinct epitopes within the protein tyrosine phosphatase (PTP)-like domain of IA-2. The minimal region required for binding by three of the PTP-like domain-specific hAbs could be located to aa 777-979. Two of these hAbs cross-reacted with the related IA-2beta PTP-like domain (IA-2beta aa 741-1033). A further PTP-like domain specific hAb required the entire PTP-like domain (aa 687-979) for binding, but critical amino acids clustered in the N-terminal region 687-777. An additional epitope could be localized within the juxtamembrane domain (aa 603-779). In competition experiments, the epitope recognized by one of the hAbs was shown to be targeted by 10 of 14 anti-IA-2-positive sera. Nucleotide sequence analysis of this hAb revealed that it used a V(H) germline gene (DP-71) preferably expressed in autoantibodies associated with IDDM. The presence of somatic mutations in both heavy and light chain genes and the high affinity or this Ab suggest that the immune response to IA-2 is Ag driven.  相似文献   

2.
3.
《The Journal of cell biology》1994,125(5):1067-1075
Tensin, a 200-kD phosphoprotein of focal contacts, contains sequence homologies to Src (SH2 domain), and several actin-binding proteins. These features suggest that tensin may link the cell membrane to the cytoskeleton and respond directly to tyrosine kinase signalling pathways. Here we identify three distinct actin-binding domains within tensin. Recombinant tensin purified after overexpression by a baculovirus system binds to actin filaments with Kd = 0.1 microM, cross- links actin filaments at a molar ratio of 1:10 (tensin/actin), and retards actin assembly by barbed end capping with Kd = 20 nM. Tensin fragments were constructed and expressed as fusion proteins to map domains having these activities. Three regions from tensin interact with actin: two regions composed of amino acids 1 to 263 and 263 to 463, cosediment with F-actin but do not alter the kinetics of actin assembly; a region composed of amino acids 888-989, with sequence homology to insertin, retards actin polymerization. A claw-shaped tensin dimer would have six potential actin-binding sites and could embrace the ends of two actin filaments at focal contacts.  相似文献   

4.
Focal adhesions attach cultured cells to the extracellular matrix, and we found endogenous protein phosphatase-1alpha isoform (PP1alpha) localized in adhesions across the entire area of adherent fibroblasts. However, in fibroblasts migrating into a scrape wound or spreading after replating PP1alpha did not appear in adhesions near the leading edge but was recruited into other adhesions coincident in time and space with incorporation of tensin. Endogenous tensin and PP1alpha co-precipitated from cell lysates with isoform-specific PP1 antibodies. Chemical cross-linking of focal adhesion preparations with Lomant's reagent demonstrated molecular proximity of endogenous PP1alpha and tensin, whereas neither focal adhesion kinase nor vinculin was cross-linked and co-precipitated with PP1alpha, suggesting distinct spatial subdomains within adhesions. Transient expression of truncated tensin showed the N-terminal 360 residues, which comprise a protein-tyrosine phosphatase domain, alone were sufficient for isoform-selective co-precipitation of co-expressed PP1alpha. Human prostate cancer PC3 cells are deficient in tensin relative to fibroblasts and have fewer, mostly peripheral adhesions. Transient expression of green fluorescent protein tensin in these cancer cells induced formation of adhesions and recruited endogenous PP1alpha into those adhesions. Thus, the protein-tyrosine phosphatase domain of tensin exhibits isoform-specific association with PP1alpha in a restricted spatial region of adhesions that are formed during cell migration.  相似文献   

5.
Uncoating of clathrin-coated vesicles in neuronal cells requires hsc70 in concert with the cofactor auxilin which contains a J-domain as well as a domain with homology to dual specific phosphatases and tensin, known as PTEN. The question of whether an analogous factor operates in other cell types has until now remained unanswered. Here we show that it is the recently discovered and widely expressed cyclin G-associated protein kinase which fulfils the function of neuronal auxilin in hsc70-mediated clathrin coat dissociation. GAK possesses a J-domain, which stimulates the hsc70 ATPase, it competes with auxilin for clathrin binding and at sufficiently high concentrations acts as a clathrin assembly protein. Moreover, GAK binds to the gamma- and alpha-appendage domains of the adaptor proteins AP-1 and AP-2 in vitro and phosphorylates their medium chains. Cells that transiently overexpress GAK are impaired in respect of receptor-mediated endocytosis. In transfected cells clathrin is dislodged from coated pits/vesicles and co-localizes with GFP-GAK in the form of large aggregates. The cellular distribution of membrane-associated adaptors was unaffected by overexpression of GAK. Our results point to a hsc70/auxilin-based uncoating system as a ubiquitous feature of eukaryotic cells.  相似文献   

6.
Tensin1 is the archetype of a family of focal adhesion proteins. Tensin1 has a phosphotyrosine binding domain that binds the cytoplasmic tail of β-integrin, a Src homology 2 domain that binds focal adhesion kinase, p130Cas, and the RhoGAP called deleted in liver cancer-1, a phosphatase and tensin homology domain that binds protein phosphatase-1α and other regions that bind F-actin. The association between tensin1 and these partners affects cell polarization, migration, and invasion. In this study we analyzed the phosphorylation of human S-tag-tensin1 expressed in HEK293 cells by mass spectrometry. Peptides covering >90% of the sequence initially revealed 50 phosphorylated serine/phosphorylated threonine (pSer/pThr) but no phosphorylated tyrosine (pTyr) sites. Addition of peroxyvanadate to cells to inhibit protein tyrosine phosphatases exposed 10 pTyr sites and addition of calyculin A to cells to inhibit protein phosphatases type 1 and 2A gave a total of 62 pSer/pThr sites. We also characterized two sites modified by O-linked N-acetylglucosamine. Tensin1 F302A, which does not bind protein phosphatase-1, showed > twofold enhanced phosphorylation of seven sites. The majority of pSer/pThr have adjacent proline (Pro) residues and we show endogenous p38 mitogen activated protein kinase (MAPK) associated with and phosphorylated tensin1 in an in vitro kinase assay. Recombinant p38α MAPK also phosphorylated S-tag-tensin1, resulting in decreased binding with deleted in liver cancer-1. Activation of p38 MAPK in cells by sorbitol-induced hyperosmotic stress increased phosphorylation of S-tag-tensin1, which reduced binding to deleted in liver cancer-1 and increased binding to endogenous pTyr proteins, including p130Cas and focal adhesion kinase. These data demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in cells and phosphorylation by p38 MAPK regulates the specificity of the tensin1 Src homology 2 domain for binding to different proteins. Tensin1 provides a hub for connecting signaling pathways involving p38 MAP kinase, tyrosine kinases and RhoGTPases.Tensin1 is a protein localized at focal adhesions that acts as a scaffold for signaling (1). The tensin1 phosphotyrosine binding (PTB)1 domain binds the cytoplasmic tail of β-integrin (2), presumed to be the basis for focal adhesion localization. Human tensin1 interacts with actin by capping the barbed ends and cross-linking actin filaments through two different actin binding regions (3). Actin binding regions were identified in chicken tensin1 at residues 1–263, 263–463, and 889–1143 (4). The C terminus region of tensin1, as well as family members tensin2, tensin3, and c-ten, has adjacent Src homology 2 (SH2) and PTB domains that interact with the tyrosine phosphorylated proteins Dok2 and PDK1 (5) as well as PI3 kinase, p130Cas, and focal adhesion kinase (FAK) (6), thereby posing a role for tensin1 in multiple signal transduction pathways. The N-terminal region of tensin1 contains a domain that is related in sequence to the tumor suppressor protein and PIP3 phosphatase called phosphatase and tensin homologue (PTEN) (3). This domain of tensin1 binds the alpha isoform of protein phosphatase 1 (PP1) (7), the major protein Ser/Thr phosphatase in cells that regulates a variety of signaling pathways. The SH2 domain of tensin1 also associates with a RhoGAP protein called deleted in liver cancer-1 (DLC-1) but does not require Tyr phosphorylation of DLC-1 (8). DLC-1 has a role in cell migration and is a negative regulator of tumor formation (810). Human breast carcinoma, prostate carcinoma, head and neck squamous cell carcinoma, and melanoma all exhibit reduced expression of tensin1, suggesting a tumor suppressor action (11). In addition, various cancer cell lines do not express detectable levels of tensin1 protein relative to normal fibroblasts that have abundant expression (1, 7). Re-expression of tensin1 in cancer cells promoted formation of focal adhesions (4) and decreased migration and invasion of MDA MB 231 human breast cancer cells (12). Taken together, these studies support a model for tensin1 as a tumor suppressor that acts as a scaffold protein for various signaling enzymes.Tensin1 was first shown to be tyrosine phosphorylated following concentration by immunoprecipitation and immunoblotting with a pTyr antibody (6). Tyrosine phosphorylation of tensin1 was only detected if fibroblasts were plated on fibronectin, laminin, or vitronectin (13), suggesting that tensin1 tyrosine phosphorylation depends on integrin-mediated signaling. Jiang et al. (14) showed increased tyrosine phosphorylation of tensin1 when cells were treated with platelet-derived growth factor. In addition, epidermal growth factor treatment of human gastric epithelial cells stimulated tyrosine phosphorylation of tensin1 and this stimulation was inhibited with the nonsteroidal anti-inflammatory drug indomethacin (15). Cells transformed by the oncogene p210BCR/ABL contained tyrosine phosphorylated tensin1 (16). Treatment of rat aortic smooth muscle cells with angiotensin or thrombin also showed an increase in tensin1 tyrosine phosphorylation (17). Rapid turnover of pTyr by phosphatases presumably keeps tensin1 pTyr levels low in cells following stimulation. Different publications report tensin1 is phosphorylated on Ser and Thr residues, but data supporting these claims was not shown (1, 3, 18, 19). Phosphoproteomics implementing shotgun mass spectrometry techniques have turned up as many as 20 pTyr, 30 pSer, and 8 pThr peptides from human tensin (www.phosphosite.org). However, to date no comprehensive analysis of tensin1 phosphorylation has been reported.We previously identified residue F302 in the KVEF motif in tensin1 as necessary for PP1α binding (12). Tensin1 F302A showed a reduced electrophoretic mobility in SDS-PAGE compared with tensin1 wild type, suggesting an increase in tensin1 phosphorylation because of absence of bound PP1. We also observed less DLC-1 binding to tensin1 F302A, but it is not known whether this was because of an increase in tensin1 phosphorylation (12). The tensin1 F302A did not suppress cancer cell invasion like tensin1 wild type (12), and this could be because of loss of PP1 binding, or less DLC-1 binding, or changes in phosphorylation.In the present study we comprehensively analyze the phosphorylation of human S-tag-tensin1. Addition of phosphatase inhibitors to cells is shown to enhance phosphorylation to yield a total of 62 Ser/Thr phosphorylation sites and expose 10 Tyr sites not otherwise seen. The majority of Ser/Thr sites have adjacent proline residues and we identify p38α MAPK activity associated with tensin1. The p38MAPK phosphorylation of tensin1 alters binding of DLC-1, p130Cas and FAK. Our results demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in addition to Tyr residues and this phosphorylation alters association with its SH2 domain binding partners.  相似文献   

7.
Mitsuokella multacida expresses a unique inositol polyphosphatase (PhyAmm) that is composed of tandem repeats (TRs). Each repeat possesses a protein tyrosine phosphatase (PTP) active-site signature sequence and fold. Using a combination of structural, mutational, and kinetic studies, we show that the N-terminal (D1) and C-terminal (D2) active sites of the TR have diverged and possess significantly different specificities for inositol polyphosphate. Structural analysis and molecular docking calculations identify steric and electrostatic differences within the substrate binding pocket of each TR that may be involved in the altered substrate specificity. The implications of our results for the biological function of related PTP-like phytases are discussed. Finally, the structures and activities of PhyAmm and tandemly repeated receptor PTPs are compared and discussed. To our knowledge, this is the first example of an inositol phosphatase with tandem PTP domains possessing substrate specificity for different inositol phosphates.  相似文献   

8.
Axl receptor tyrosine kinase is implicated in several malignancies and is the receptor for the vitamin K-dependent growth factor Gas6. From a yeast two-hybrid screen of protein-protein interactions with the Axl cytoplasmic domain, we detected a previously uncharacterised SH2 domain-containing protein. We cloned two novel splice variants of this protein that give rise to 1409- and 1419-amino acid proteins, differing only in their N-terminal residues and yielding a 150-kDa protein product by in vitro translation. The Axl-interacting C-terminus contains a tandem SH2 and PTB domain combination homologous to the focal adhesion protein tensin. We detected interaction of Axl with both domains in mammalian cells by co-immunoprecipitation and two-hybrid analyses. In addition, the protein possesses an N-terminal putative phorbol ester-binding C1 domain as well as a central tyrosine phosphatase motif. Thus, we have named the protein C1 domain-containing phosphatase and TENsin homologue (C1-TEN). Northern blot analysis of C1-TEN in human tissues revealed highest expression in heart, kidney, and liver. In summary, we have identified a novel multi-domain intracellular protein that interacts with Axl and which may furthermore be involved in other signal transduction pathways.  相似文献   

9.
Auxilin is a brain-specific DnaJ homolog that is required for Hsc70 to dissociate clathrin from bovine brain clathrin-coated vesicles. However, Hsc70 is also involved in uncoating clathrin-coated vesicles formed at the plasma membrane of non-neuronal cells suggesting that an auxilin homolog may be required for uncoating in these cells. One candidate is cyclin G-associated kinase (GAK), a 150-kDa protein expressed ubiquitously in various tissues. GAK has a C-terminal domain with high sequence similarity to auxilin; like auxilin this C-terminal domain consists of three subdomains, an N-terminal tensin-like domain, a clathrin-binding domain, and a C-terminal J-domain. Western blot analysis shows that GAK is present in rat liver, bovine testes, and bovine brain clathrin-coated vesicles. More importantly, liver clathrin-coated vesicles, which contain GAK but not auxilin, are uncoated by Hsc70, suggesting that GAK acts as an auxilin homolog in non-neuronal cells. In support of this view, the clathrin-binding domain of GAK alone induces clathrin polymerization into baskets and the combined clathrin-binding domain and J-domain of GAK supports uncoating of AP180-clathrin baskets by Hsc70 at pH 7 and induces Hsc70 binding to clathrin baskets at pH 6. Immunolocalization studies suggest that GAK is a cytosolic protein that is concentrated in the perinuclear region; it appears to be highly associated with the trans-Golgi where the budding of clathrin-coated vesicles occurs. We propose that GAK is a required cofactor for the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells.  相似文献   

10.
Examples of a new class of phytase related to protein tyrosine phosphatases (PTP) were recently isolated from several anaerobic bacteria from the rumen of cattle. In this study, the diversity of PTP-like phytase gene sequences in the rumen was surveyed by using the polymerase chain reaction (PCR). Two sets of degenerate primers were used to amplify sequences from rumen fluid total community DNA and genomic DNA from nine bacterial isolates. Four novel PTP-like phytase sequences were retrieved from rumen fluid, whereas all nine of the anaerobic bacterial isolates investigated in this work contained PTP-like phytase sequences. One isolate, Selenomonas lacticifex, contained two distinct PTP-like phytase sequences, suggesting that multiple phytate hydrolyzing enzymes are present in this bacterium. The degenerate primer and PCR conditions described here, as well as novel sequences obtained in this study, will provide a valuable resource for future studies on this new class of phytase. The observed diversity of microbial phytases in the rumen may account for the ability of ruminants to derive a significant proportion of their phosphorus requirements from phytate.  相似文献   

11.
12.
Tensin is a protein confined at those discrete and specialized regions of the plasma membrane, known as focal adhesions. It contains, at the C-terminus, a phosphotyrosine binding (PTB) domain that can interact with the cytoplasmic tail of beta-integrins and is necessary for localization of the protein to cell-matrix adhesions. Here, we present the NMR solution structure of the PTB domain of tensin1. Moreover, through NMR binding studies, we demonstrate that the PTB domain of tensin1 is able to interact with phosphatidylinositol 4, 5-diphosphate (PtIns(4,5)P2) and phosphatidylinositol 4-phosphate (PtIns(4)P), presenting higher affinity for the diphosphorylated inositide. Chemical shift mapping studies reveal a putative PtIns(4,5)P2 binding region that is distinct from the predicted integrin beta-tail recognition site. Heteronuclear NOE experiments, recorded in absence and presence of PtIns(4,5)P2, indicate that the interaction with lipids decreases the flexibility of loop regions, predicted to be important for integrin binding, and thus, proposes a possible correlation between the two distinct binding events. Therefore, our studies suggest that capture of lipids by the PTB domain of tensin1 may play a role for the protein function at focal adhesions.  相似文献   

13.
During clathrin-mediated endocytosis Hsc70, supported by the J-domain protein auxilin, uncoats clathrin-coated vesicles. Auxilin contains both a clathrin-binding domain and a J-domain that binds Hsc70, and it has been suggested that these two domains are both necessary and sufficient for auxilin activity. To test this hypothesis, we created a chimeric protein consisting of the J-domain of auxilin linked to the clathrin-binding domain of the assembly protein AP180. This chimera supported uncoating, but unlike auxilin it acted stoichiometrically rather than catalytically because, like Hsc70, it remained associated with the uncoated clathrin. This observation supports our proposal that Hsc70 chaperones uncoated clathrin by inducing formation of a stable Hsc70-clathrin-AP complex. It also shows that Hsc70 acts by dissociating individual clathrin triskelions rather than cooperatively destabilizing clathrin-coated vesicles. Because the chimera lacks the C-terminal subdomain of the auxilin clathrin-binding domain, it seemed possible that this subdomain is required for auxilin to act catalytically, and indeed its deletion caused auxilin to act stoichiometrically. In contrast, deletion of the N-terminal subdomain weakened auxilin-clathrin binding and prevented auxilin from polymerizing clathrin. Therefore the C-terminal subdomain of the clathrin-binding domain of auxilin is required for auxilin to act catalytically, whereas the N-terminal subdomain strengthens auxilin-clathrin binding.  相似文献   

14.
Protein tyrosine phosphorylation has been implicated in the growth and functional responses of hematopoietic cells. Recently, approaches have been developed to characterize the protein tyrosine phosphatases that may contribute to regulation of protein tyrosine phosphorylation. One novel protein tyrosine phosphatase was expressed predominantly in hematopoietic cells. Hematopoietic cell phosphatase encodes a 68-kDa protein that contains a single phosphatase conserved domain. Unlike other known protein tyrosine phosphatases, hematopoietic cell phosphatase contains two src homology 2 domains. We also cloned the human homolog, which has 95% amino acid sequence identity. Both the murine and human gene products have tyrosine-specific phosphatase activity, and both are expressed predominantly in hematopoietic cells. Importantly, the human gene maps to chromosome 12 region p12-p13. This region is associated with rearrangements in approximately 10% of cases of acute lymphocytic leukemia in children.  相似文献   

15.
Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants.  相似文献   

16.
The specificity of protein–protein interactions in cellular signaling cascades is dependent on the sequence and intramolecular location of distinct amino acid motifs. We used the two-hybrid interaction trap to identify proteins that can associate with the PDZ motif-rich segment in the protein tyrosine phosphatase PTP-BL. A specific interaction was found with the Lin-11, Isl-1, Mec-3 (LIM) domain containing protein RIL. More detailed analysis demonstrated that the binding specificity resides in the second and fourth PDZ motif of PTP-BL and the LIM domain in RIL. Immunohistochemistry on various mouse tissues revealed a submembranous colocalization of PTP-BL and RIL in epithelial cells. Remarkably, there is also an N-terminal PDZ motif in RIL itself that can bind to the RIL-LIM domain. We demonstrate here that the RIL-LIM domain can be phosphorylated on tyrosine in vitro and in vivo and can be dephosphorylated in vitro by the PTPase domain of PTP-BL. Our data point to the presence of a double PDZ-binding interface on the RIL-LIM domain and suggest tyrosine phosphorylation as a regulatory mechanism for LIM-PDZ associations in the assembly of multiprotein complexes. These findings are in line with an important role of PDZ-mediated interactions in the shaping and organization of submembranous microenvironments of polarized cells.  相似文献   

17.
Focal adhesions are sites of cell-extracellular matrix interactions that function in anchoring stress fibers to the plasma membrane and in adhesion-mediated signal transduction. Both focal adhesion structure and signaling ability involve protein tyrosine phosphorylation. LAR is a broadly expressed transmembrane protein tyrosine phosphatase comprised of a cell adhesion-like ectodomain and two intracellular protein tyrosine phosphatase domains. We have identified a novel cytoplasmic 160 kDa phosphoserine protein termed LAR-interacting protein 1 (LIP.1), which binds to the LAR membrane-distal D2 protein tyrosine phosphatase domain and appears to localize LAR to focal adhesions. Both LAR and LIP.1 decorate the ends of focal adhesions most proximal to the cell nucleus and are excluded from the distal ends of focal adhesions, thus localizing to regions of focal adhesions presumably undergoing disassembly. We propose that LAR and LIP.1 may regulate the disassembly of focal adhesions and thus help orchestrate cell-matrix interactions.  相似文献   

18.
Bdellovibrio bacteriovorus is an unusual δ-proteobacterium that invades and preys on other Gram-negative bacteria and is of potential interest as a whole cell therapeutic against pathogens of man, animals and crops. PTPs (protein tyrosine phosphatases) are an important class of enzyme involved in desphosphorylating a variety of substrates, often with implications in cell signaling. The B. bacteriovorus open reading frame Bd1204 is predicted to encode a PTP of unknown function. Bd1204 is both structurally and mechanistically related to the PTP-like phytase (PTPLP) class of enzymes and possesses a number of unique properties not observed in any other PTPLPs characterized to date. Bd1204 does not display catalytic activity against some common protein tyrosine phosphatase substrates but is highly specific for hydrolysis of phosphomonoester bonds of inositol hexakisphosphate. The structure reveals that Bd1204 has the smallest and least electropositive active site of all characterized PTPLPs to date yet possesses a unique substrate specificity characterized by a strict preference for inositol hexakisphosphate. These two active site features are believed to be the most significant contributors to the specificity of phytate degrading enzymes. We speculate that Bd1204 may be involved in phosphate acquisition outside of prey.  相似文献   

19.
Protein tyrosine phosphorylation is an important regulatory mechanisms in cell physiology. While the protein tyrosine kinase (PTKase) family has been extensively studied, only six protein tyrosine phosphatases (PTPases) have been described. By Southern blot analysis, genomic DNA from several different phyla were found to cross-hybridize with a cDNA probe encoding the human leukocyte-common antigen (LCA; CD45) PTPase domains. To pursue this observation further, total mRNA from the protochordate Styela plicata was used as a tempalte to copy and amplify, using polymerase chain reaction (PCR) technology, PTPase domains. Twenty-seven distinct sequences were identified that contain hallmark residues of PTPases; two of these are similar to described mammalian PTPases. Southern blot analysis indicates that at least one other Styela sequence is highly conserved in a variety of phyla. Seven of the Styela domains have significant similarity to each other, indicating a subfamily of PTPases. However, most of the sequences are disparate. A comparison of the 27 Styela sequences with the ten known PTPase domain sequences reveals that only three residues are absolutely conserved and identifies regions that are highly divergent. The data indicate that the PTPase family will be equally as large and diverse as the PTKases. The extent and diversity of the PTPase family suggests that these enzymes are, in their own right, important regulators of cell behavior.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M37986-M38041.  相似文献   

20.
BACKGROUND: In eukaryotic cells, clathrin-coated vesicles transport specific cargo from the plasma membrane and trans-Golgi network to the endosomal system. Removal of the clathrin coat in vitro requires the uncoating ATPase Hsc70 and its DnaJ cofactor auxilin. To date, a requirement for auxilin and Hsc70 in clathrin function in vivo has not been demonstrated. RESULTS: The Saccharomyces cerevisiae SWA2 gene, previously identified in a synthetic lethal screen with arf1, was cloned and found to encode a protein with a carboxy-terminal DnaJ domain which is homologous to that of auxilin. Like auxilin, Swa2p has a clathrin-binding domain and is able to stimulate the ATPase activity of Hsc70. The swa2-1 allele recovered from the original screen carries a point mutation in its tetratricopeptide repeat (TPR) domain, a motif not found in auxilin but known in other proteins to mediate interaction with heat-shock proteins. Swa2p fractionates in the cytosol and appears to be heavily phosphorylated. Disruption of SWA2 causes slow growth and several phenotypes that are very similar to those exhibited by clathrin mutants. Furthermore, the swa2Delta mutant exhibits a significant increase in membrane- associated or -assembled clathrin relative to a wild-type strain. CONCLUSIONS: These results indicate that Swa2p is a clathrin-binding protein required for normal clathrin function in vivo. They suggest that Swa2p is the yeast ortholog of auxilin and has a role in disassembling clathrin, not only in uncoating clathrin-coated vesicles but perhaps in preventing unproductive clathrin assembly in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号