首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basis for resistance of yeast form of Histoplasma capsulatum to antifungal activity of human neutrophils was studied. In limiting dilution assays and short term coculture assays human neutrophils were ineffective in killing H. capsulatum whereas Candida albicans was readily killed. By contrast, in a cell free hydrogen peroxide-peroxidase-halide system H. capsulatum was as sensitive to killing as C. albicans. Moreover, lysate of human neutrophils effectively substituted for horse-radish peroxidase in a cell free system for killing H. capsulatum. H. capsulatum elicited significant products of the oxidative burst in human neutrophils as detected by luminol-enhanced chemiluminescence. However, the response was two-fold less (p<0.05) than that induced by C. albicans. Transmission electron microscopy studies showed that phagosome-lysosome fusion took place when neutrophils phagocytosed C. albicans or H. capsulatum. Taken together, these findings indicate that, even though H. capsulatum elicits an oxidative burst and phagosome-lysosome fusion within the phagosome, it is capable of evading damage in short term assays.Abbreviations CFU colony forming units - PMN polymorphonuclear neutrophil - CTCM complete tissue culture medium - CL chemiluminescence - HPO horseradish peroxidase - P-L lysosomal peroxidase positive material  相似文献   

2.
Many natural proteins have been developed into drugs and produced for direct application. Identifying improved hosts to achieve high-level heterologous protein production is a challenge in the study of heterologous protein expression in recombinant yeast. In this study, a novel high-throughput assay to screen such overproducing Saccharomyces cerevisiae strains was systematically developed. The protocol designed was based on screening host strain derivatives with increased superoxide dismutase dependent resistance to oxidative stress. Yeast cells transformed with recombinant plasmid carrying SOD1 gene as a reporter responded exquisitely to oxidative stress induced by elevated concentrations of paraquat. Improved yeast strains resulting from screening clones subjected to genome shuffling through selective pressure argue for a more effective screening system compared with traditonal selection. Moreover, this approach can be employed in general biochemical analysis without utilization of flow cytometry or well plate reader. Therefore, it is expected that the high-throughput assay would make superior strains producing heterologous proteins.  相似文献   

3.
Polyamines, ubiquitous polycationic compounds, are involved in many cellular responses and relieve paraquat-induced cytotoxicity inEscherichia coli. We constructed a newE. coli mutant strain, JIL528, which is deficient in the biosynthesis of both putrescine and spermidine, to examine the physiological role of polyamines under oxidative stress caused by paraquat. Putrescine and spermidine downregulate the expression ofsoxS induced by paraquat in a concentration-dependent manner. The product of SoxS is a key regulator governing cellular responses against oxidative stress inE. coli. The downregulation ofsoxS expression by polyamines was not shown in thesoxR mutant background. Glucose-6-phosphate dehydrogenase (G6PDH; encoded byzwf) and manganese-containing superoxide dismutase (Mn-SOD; encoded bysodA) activities induced by paraquat were decreased by exogenous polyamines. The induction of thezwf expression by paraquat was also decreased by exogenous polyamines. The polyamine-deficient mutant strain JIL528 showed a highersoxS expression than its parent polyamine-proficient wild type BW1157, on exogenous supplementation of paraquat concentrations below 1 mol/L. While the growth rate of the mutant was decreased,soxS expression was increased in a concentration-dependent manner above 0.01 mol/L of paraquat. In contrast, growth inhibition of the mutant by paraquat was relieved, andsoxS was no longer induced by exogenous putrescine (1 mmol/L). In conclusion, polyamines protect against paraquat-induced toxicity but downregulatesoxS expression, suggesting that the protective role of polyamines against oxidative damage induced by paraquat results insoxS downregulation.  相似文献   

4.
Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.  相似文献   

5.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H2O2, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H2O2 or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H2O2. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.  相似文献   

6.
Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram‐positive and Gram‐negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP‐induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP‐Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two‐component system was a negative regulator of PGRP‐induced oxidative stress. By contrast, PGRP‐induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn2+ through influx of extracellular Zn2+) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy.  相似文献   

7.
Summary. The cysteine biosynthesis pathway differs between plants and the yeast Saccharomyces cerevisiae. The yeast MET25 gene encoded to O-acetylhomoserine sulfhydrylase (AHS) catalyzed the reaction that form homocysteine, which later can be converted into cystiene. In vitro studies show that this enzyme possesses also the activity of O-acetyl(thiol)lyase (OASTL) that catalyzes synthesis of cysteine in plants. In this study, we generated transgenic tobacco plants expressing the yeast MET25 gene under the control of a constitutive promoter and targeted the yeast protein to the cytosol or to the chloroplasts. Both sets of transgenic plants were taller and greener than wild-type plants. Addition of SO2, the substrate of the yeast enzyme caused a significant elevation of the glutathione content in representative plants from each of the two sets of transgenic plants expressing the yeast gene. Determination of non-protein thiol content indicated up to four-folds higher cysteine and 2.5-fold glutathione levels in these plants. In addition, the leaf discs of the transgenic plants were more tolerant to toxic levels of sulphite, and to paraquat, an herbicide generating active oxygen species.  相似文献   

8.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells. During various stresses, the yeast Saccharomyces cerevisiae induces glycerol or trehalose synthesis, but the fluctuations in gene expression and intracellular levels of proline in yeast are not yet well understood. We previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. In this study, we examined the relationships between the gene expression profiles and intracellular contents of glycerol, trehalose, and proline under stress conditions. When yeast cells were exposed to 1 M sorbitol stress, the expression of GPD1 encoding glycerol-3-phosphate dehydrogenase is induced, leading to glycerol accumulation. In contrast, in the presence of 9% ethanol, the rapid induction of TPS2 encoding trehalose-6-phosphate phosphatase resulted in trehalose accumulation. We found that intracellular proline levels did not increase immediately after addition of sorbitol or ethanol. However, the expressions of genes involved in proline synthesis and degradation did not change during exposure to these stresses. It appears that the elevated proline levels are due primarily to an increase in proline uptake from a nutrient medium caused by the induction of PUT4. These results suggest that S. cerevisiae cells do not accumulate proline in response to sorbitol or ethanol stress different from other organisms.  相似文献   

9.
Protein redox regulation is increasingly recognized as an important switch of protein activity in yeast, bacteria, mammals and plants. In this study, we identified proteins with potential thiol switches involved in jasmonate signaling, which is essential for plant defense. Methyl jasmonate (MeJA) treatment led to enhanced production of hydrogen peroxide in Arabidopsis leaves and roots, indicating in vivo oxidative stress. With monobromobimane (mBBr) labeling to capture oxidized sulfhydryl groups and 2D gel separation, a total of 35 protein spots that displayed significant redox and/or total protein expression changes were isolated. Using LC–MS/MS, the proteins in 33 spots were identified in both control and MeJA-treated samples. By comparative analysis of mBBr and SyproRuby gel images, we were able to determine many proteins that were redox responsive and proteins that displayed abundance changes in response to MeJA. Interestingly, stress and defense proteins constitute a large group that responded to MeJA. In addition, many cysteine residues involved in the disulfide dynamics were mapped based on tandem MS data. Identification of redox proteins and their cysteine residues involved in the redox regulation allows for a deeper understanding of the jasmonate signaling networks.  相似文献   

10.
Purpose

Hyperglycemia causes abnormal accumulation of methylglyoxal (MGO) and concomitant DNA, protein glycation. These pathophysiological changes further leads to diabetic complications. Yeast Saccharomyces cerevisiae is one of the best model to study MGO-induced glycation modifications. The aim of the present study was to investigate the effect of MGO on protein, DNA glycation, and oxidative stress markers using S. cerevisiae as a system.

Methods

Saccharomyces cerevisiae cells were incubated with 8 mM of MGO for 4 h and 24 h. After incubation, protein and DNA samples were isolated from the lysed cells. The samples were analyzed for various glycation (fructosamine, β-amyloid, free amino group, free thiol group, and hyperchromic shift analysis) and oxidative stress markers (total antioxidant potential, catalase, glutathione, and lipid peroxidation).

Results

MGO (8 mM) acted as a potent glycating agent, causing protein and DNA glycation in treated yeast cells. The glycation markers fructosamine and β-amyloid were significantly elevated when incubated for 4 h as compared to 24 h. Oxidative stress in the glycated yeast cells alleviated cellular antioxidant capacity and reduced the cell viability.

Conclusion

MGO caused significant glycation modifications of proteins and DNA in yeast cells. It also triggered increase in intracellular oxidative stress. MGO-induced protein, DNA glycation, and oxidative stress in S. cerevisiae indicate the suitability of the yeast model to study various biochemical pathways involved in diabetic complications and even conformational pathologies.

  相似文献   

11.
SPINDLY (SPY) gene encodes a putative O-linked N-acetyl-glucosamine transferase, and yeast two-hybrid assay identified GIGANTEA (GI) as a SPY-interacting partner in Arabidopsis. GIGANTEA gene was previously shown to be involved in the regulation of oxidative stress response; however, it is unclear whether SPY gene is also involved in oxidative stress response. Here we showed that SPY plays a role in the regulation of the oxidative stress response. The spy-1 mutant was more tolerant to paraquat (PQ)-or hydrogen peroxide (H2O2)-mediated oxidative stress than wild-type plants. Analyses of endogenous H2O2 and superoxide anion radicals as well as lipid peroxidation revealed that enhanced tolerance of the spy-1 mutant to PQ-stress was not due to defects in the PQ uptake or the PQ sequestration from its site of action but rather the spy-1 mutation alleviated oxidative damage of plant cells upon PQ stress. Higher constitutive activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in spy-1 are more likely to be due to activation of both CSD2 gene encoding chloroplast Cu/Zn SOD and APX1 gene. Taken together, these results suggest that enhanced tolerance of the spy-1 mutant to oxidative stress is associated, at least in part, with constitutive activation of CSD2 and APX1. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 4, pp. 604–611. The text was submitted by the authors in English.  相似文献   

12.
The pathogenic fungusHistoplasma capsulatum undergoes a mycelial to yeast transition when the temperature of incubation is switched from 25° to 37°C. The presence of exogenous cysteine or cystine has been reported to be required for this phase transition and for maintenance of yeast form and growth. However, the initial stages of mycelial to yeast transition and yeast growth are associated with the rapid utilization and conversion of exogenous cystine to at least one sulfhydryl compound, which appears in the extracellular milieu as detected by dithiodinitrobenzoic acid. Attempts to identify the extracellular thiol-containing compound with cystine metabolic standards indicate that the released thiols are not cysteine or reduced glutathione. These results indicate that other thiols may be important in supportingH. capsulatum yeast morphogenesis.  相似文献   

13.
The responses of antioxidative system and photosystem II photochemistry of rice (Oryza sativa L.) to paraquat induced oxidative stress were investigated in a chilling-tolerant cultivar Xiangnuo no. 1, and a chilling-susceptible cultivar, IR-50. Electrolyte leakage and malondialdehyde (MDA) content of Xiangnuo no. 1 were little affected by paraquat, but they increased in IR-50. After paraquat treatment, superoxide dismutase (SOD) activity remained high in Xiangnuo no. 1, while it declined in IR-50. Activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) declined with oxidative stress in both cultivars, but Xiangnuo no. 1 had higher GR activity than IR-50. Under paraquat induced oxidative stress, ascorbic acid (AsA) and reduced glutathione (GSH) concentrations remained high in Xiangnuo no. 1, but decreased in IR-50. The results indicated that higher activities of SOD and GR and higher contents of AsA and GSH in Xiangnuo no. 1 under paraquat induced oxidative stress were associated with its tolerance to paraquat, while paraquat induced damage to IR-50 was related to decreased activities of SOD, APX and GR and contents of AsA and GSH. F v/F m, Φ PSII, and qP remained high in Xiangnuo no. 1, while they decreased greatly in IR-50 under paraquat induced oxidative stress.  相似文献   

14.
15.
16.
CBL-CIPK是高等植物中广泛存在的一类解析Ca~(2+)信号的蛋白。该研究在前期工作基础上,对甘蓝型油菜(Brassica napus L.)的BnaCIPK15基因进行了亚细胞定位、双分子荧光互补(BiFC)、酵母双杂交和qRT-PCR检测等一系列分析,以探究BnaCIPK15蛋白在ABA激素响应中的作用。结果显示:(1)亚细胞定位发现,BnaCIPK15蛋白定位于细胞质和细胞核中; BiFC分析发现,BnaCIPK15蛋白与BnaCBL1/3/4/9蛋白之间的互作较强,与BnaCBL10仅有微弱互作。(2)qRT-PCR检测发现,BnaCIPK15基因受ABA和冷胁迫的诱导极显著上调表达,而对百草枯(Paraquat)、活性氧(H_2O_2)和热胁迫的诱导较弱,表明BnaCIPK15基因很可能参与ABA和冷胁迫的调控过程。(3)酵母滴定实验结果显示,BnaCIPK15蛋白与脱落酸(ABA)信号通路中的BnaHAB1蛋白(属于蛋白磷酸酶PP2C家族)存在明显的互作,而与BnaABFs/AREB3/ABI5转录因子无明显互作;BiFC验证显示,BnaCIPK15与BnaHAB1蛋白之间存在互作信号,而BnaCIPK15与BnaHAB2组合没有观察到信号,证明BnaCIPK15与BnaHAB1磷酸酶具有特异互作特征,推测BnaCIPK15可能参与调控ABA信号转导。研究认为,甘蓝型油菜中可能存在基于BnaCIPK15-BnaHAB1的互作模块,并参与ABA的信号转导和网络调控。  相似文献   

17.
Trypanothione disulfide (T[S]2), an unusual form of glutathione found in parasitic protozoa, plays a crucial role in the regulation of the intracellular thiol redox balance and in the defense against oxidative stress. Trypanothione reductase (TR) is central to the thiol metabolism in all trypanosomatids, including the human pathogens Trypanosoma cruzi, Trypanosoma brucei and Leishmania. Here we report the cloning, sequencing and expression of the TR encoding gene from L. (L.) amazonensis. Multiple protein sequence alignment of all known trypanosomatid TRs highlights the high degree of conservation and illustrates the phylogenetic relationships. A 3D homology model for L. amazonensis TR was constructed based on the previously reported Crithidia fasciculata structure. The purified recombinant TR shows enzyme activity and in vivo expression of the native enzyme could be detected in infective promastigotes, both by Western blotting and by immunofluorescence. Nucleotide sequence data reported in this paper is available in the GenBankTM database under accession number DQ530259.  相似文献   

18.
To elucidate the physiological roles and regulation of a protein disulfide isomerase (PDI) from the fission yeast Schizosaccharomyces pombe, the full-length PDI gene was ligated into the shuttle vector pRS316, resulting in pPDI10. The determined DNA sequence carries 1,636 bp and encodes the putative 359 amino acid sequence of PDI with a molecular mass of 39,490 Da. In the amino acid sequence, the S. pombe PDI appears to be very homologous to A. thaliana PDI. The S. pombe cells harboring pPDI10 showed increased PDI activity and accelerated growth, suggesting that the cloned PDI gene is functioning and involved in the yeast growth. The 460 bp upstream region of the PDI gene was fused into promoterless β-galactosidase gene of the shuttle vector YEp367R to generate pYUPDI10. The synthesis of β-galactosidase from the PDI–lacZ fusion gene was enhanced by oxidative stress, such as superoxide anion and hydrogen peroxide. It was also induced by some non-fermentable and fermentable carbon sources. Nitrogen starvation was able to enhance the synthesis of β-galactosidase from the PDI–lacZ fusion gene. The enhancement by oxidative stress and fermentable carbon sources did not depend on the presence of Pap1. The PDI mRNA levels were increased in both Pap1-positive and Pap1-negative cells treated with glycerol. Taken together, the S. pombe PDI gene is involved in cellular growth and response to nutritional and oxidative stress.  相似文献   

19.
Summary The vacuole is one of the most prominent compartments in yeast cells. The wild-type yeast cells have a large vacuolar compartment which occupies approximately a quarter of the cell volume, while thevam4 mutant cells exhibit highly fragmented vacuolar morphology. We isolated theVAM4 gene and found that theVAM4 is identical to theYPT7 which encodes a member of small GTP-binding protein superfamily. We introduced mutations to theVAM4/YPT7 which alter nucleotide binding characteristics of the gene product specifically, and their activities for the vacuolar morphogenesis were examined by transforming the mutant genes into yeast cells. The Thr22Asn mutation, which was expected to fix the protein in the GDP-bound state, resulted in loss of function in the vacuolar morphogenesis. Subcellular fractionation analysis indicated that the mutant molecule did not associate with intracellular membranes efficiently. In contrast, Vam4/Ypt7p with the Gln68Leu mutation, which was expected to be the GTP-bound form, complemented the fragmented vacuolar morphology of vam4 mutant cells. Vam4/Ypt7p with the Gln68Leu mutation also complemented the defects in the biogenesis of vacuolar alkaline phosphatase whose maturation requires the proper function of Vam4/Ypt7p. Overexpression of the mutant proteins in wild-type cells did not develop dominant-negative effects on the vacuolar assembly. These results indicated that the GTP-bound form of Vam4/Ypt7p promotes the biogenesis and morphogenesis of the yeast vacuolar compartment.Abbreviations ALP alkaline phosphatase - CDE centromeric - DNA element - CPY carboxypeptidase Y - GST glutathione S-transferase  相似文献   

20.
Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O2 •− ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号