首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accessibility of the asparagine-linked carbohydrate chains of human thyrotropin (hTSH) and free alpha and beta subunits was investigated by their susceptibility to endoglycosidases H and F as well as to peptide:N-glycosidase F. Iodinated hTSH or subunits were incubated with a commercial enzyme preparation containing both endoglycosidase F and N-glycosidase F activities and further analyzed by sodium dodecyl sulfate gel electrophoresis followed by quantitative autoradiography. We show that, working at the optimum of the N-glycosidase activity, the relative amount of endoglycosidase required for half-deglycosylation was 20-fold higher for native hTSH than for the reduced and dissociated subunits. Under nondenaturing conditions, the 18K beta subunit of hTSH could be readily deglycosylated to a 14K species while the 22K alpha subunit was largely resistant. However, both subunits were converted to an apoprotein of similar apparent molecular weight of 14K following reduction of disulfide bonds. In contrast, the free alpha subunit of human choriogonadotropin appeared fully sensitive to carbohydrate removal under nonreducing conditions despite the presence of a partially deglycosylated 18K intermediate at low concentration of endoglycosidase. Similarly, both hTSH-alpha and hTSH-beta could be completely deglycosylated after acid dissociation of the native hormone. While all three carbohydrate chains of hTSH are sensitive to pure peptide:N-glycosidase F, only one on alpha and the single oligosaccharide present on beta in hTSH appeared to be cleaved by pure endoglycosidase F. Interestingly, one of the two carbohydrate chains present on alpha was also found to be susceptible to endoglycosidase H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The asparagine-linked carbohydrate structures at each of the three glycosylation sites of human thyrotrophin were investigated by 400 MHz 1H-NMR spectroscopy. Highly purified, biologically active human thyrotrophin (hTSH) was dissociated into its subunits hTSH alpha (glycosylated at Asn 52 and Asn 78) and hTSH beta (glycosylated at Asn 23). The alpha-subunit was further treated with trypsin which gave two glycopeptides that were subsequently separated by reverse-phase HPLC and identified by amino acid sequence analysis. The oligosaccharides were liberated from hTSH alpha glycopeptides and from intact hTSH beta by hydrazinolysis, and were fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC preparatory to structural analysis. The N-glycans present on hTSH were mainly diantennary complex-type structures with a common Man alpha 1-3 branch that terminated with 4-O-sulphated GalNAc. The Man alpha 1-6 branch displayed structural heterogeneity in the terminal sequence, with chiefly alpha 2-3-sialylated Gal and/or 4-O-sulphated GalNAc. The relative amounts of the two major complete diantennary oligosaccharides and their core fucosylation differed according to glycosylation site; the sulphated/sialylated diantennary oligosaccharide was most abundant at the two sites on the alpha-subunit, whereas the disulphated, core-fucosylated oligosaccharide was more plentiful on the beta-subunit. Some interesting structural features, not previously reported for the N-glycans of hTSH, included 3-O-sulphated galactose (SO4-3Gal) and peripheral fucose (Fuc alpha 1-3GlcNAc) in the Man alpha 1-6 branch of some diantennary structures; the former suggests the presence of a hitherto uncharacterized galactose-3-O-sulphotransferase in thyrotroph cells of the human anterior pituitary gland.  相似文献   

3.
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role.  相似文献   

4.
Isolated alpha and beta chains from Xenopus laevis hemoglobin have been purified. The isolation procedure yields native alpha chains whose functional behavior has been characterized and compared with that of human alpha chains. Isolated beta chains in the presence of oxygen are characterized by low stability, and hence their functional characterization was limited to the CO binding kinetics. When stoichiometric amounts of the isolated alpha and beta chains are mixed, a tetramer characterized by heme-heme interactions and oxygen affinity comparable to that of the native molecule is readily reconstituted. Moreover, both chains, under appropriate conditions, form stable hybrid tetramers with the partner subunits from human hemoglobin; results on the functional properties of these hybrid hemoglobins are presented and discussed in relation to the stereochemical model of the Root effect.  相似文献   

5.
In order to understand the molecular mechanism of ouabain resistance in the toad Bufo marinus, Na,K-ATPase alpha and beta subunits have been cloned and their functional properties tested in the Xenopus laevis oocyte expression system. According to sequence comparison between species, alpha 1, beta 1, and beta 3 isoforms were identified in a clonal toad urinary bladder cell line (TBM 18-23). The sequence of the alpha 1 isoform is characterized by two positively charged amino acids (Arg, Lys) at the N-terminal border of the H1-H2 extracellular loop and no charged amino acid at the C terminus, a pattern distinct from the ouabain-resistant rat alpha 1 isoform. The coexpression of alpha 1 beta 1 or alpha 1 beta 3 TBM subunits in the Xenopus oocyte resulted in the expression of identical maximum Na,K-pump currents with identical inhibition constant for ouabain (Ki) (alpha 1 beta 1: 53 +/- 3 microM; n = 7 vs. alpha 1 beta 3: 57 +/- 3.0 microM; n = 8) but distinct potassium half activation constant (K1/2) (alpha 1 beta 1: 0.87 +/- 0.08 mM, n = 16; alpha 1 beta 3: 1.29 +/- 0.07 mM, n = 17; p less than 0.005). We conclude that (i) the TBM alpha 1 isoform is necessary and sufficient to confer the ouabain resistant phenotype; (ii) the beta 3 or beta 1 subunit can associate with the alpha 1 equally well without affecting the ouabain-resistant phenotype; (iii) some specific sequence of the beta subunit can modulate the activation of the Na,K-pump by extracellular potassium ions.  相似文献   

6.
High conductance, calcium- and voltage-activated potassium (BK, MaxiK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. The most remarkable effects of beta1 and beta2 subunits are an increase of the calcium sensitivity and the slow down of channel kinetics. However, the detailed characteristics of channels formed by alpha and beta1 or beta2 are dissimilar, the most remarkable difference being a reduction of the voltage sensitivity in the presence of beta1 but not beta2. Here we reveal the molecular regions in these beta subunits that determine their differential functional coupling with the pore-forming alpha-subunit. We made chimeric constructs between beta1 and beta2 subunits, and BK channels formed by alpha and chimeric beta subunits were expressed in Xenopus laevis oocytes. The electrophysiological characteristics of the resulting channels were determined using the patch clamp technique. Chimeric exchange of the different regions of the beta1 and beta2 subunits demonstrates that the NH3 and COOH termini are the most relevant regions in defining the behavior of either subunit. This strongly suggests that the intracellular domains are crucial for the fine tuning of the effects of these beta subunits. Moreover, the intracellular domains of beta1 are responsible for the reduction of the BK channel voltage dependence. This agrees with previous studies that suggested the intracellular regions of the alpha-subunit to be the target of the modulation by the beta1-subunit.  相似文献   

7.
High threshold L-type Ca2+ channels of skeletal muscle are thought to consist of a complex of alpha 1, alpha 2 delta, beta, and gamma subunits. Expression of the cloned alpha 1 subunit from skeletal and cardiac muscle has established that this protein is the dihydropyridine-sensitive ion-conducting subunit. However, the kinetics of the skeletal muscle alpha 1 alone expressed in mouse L-cells were abnormally slow and were accelerated to within the normal range by coexpression with the skeletal muscle beta subunit. The kinetics of cardiac muscle alpha 1 were also slowed but to a lesser extent and were not altered by coexpression with skeletal muscle alpha 2. We show here that coexpression of the skeletal muscle beta subunit with the cardiac alpha 1 subunit in Xenopus laevis oocytes produced: 1) an increase in the peak voltage-sensitive current, 2) a shift of the peak current-voltage relationship to more hyperpolarized potentials, and 3) an increase in the rate of activation. Coexpression of the skeletal muscle gamma subunit did not have a significant effect on currents elicited by alpha 1. However, when gamma was coexpressed with beta and alpha 1, both peak currents and rates of activation at more negative potentials were increased. These results indicate that rather than simply amplifying expression of alpha 1, heterologous skeletal muscle beta and gamma subunits can modulate the biophysical properties of cardiac alpha 1.  相似文献   

8.
9.
10.
Protein kinase CK2 (also known as casein kinase 2) has catalytic (alpha, alpha') and regulatory (beta) subunits. The role of carboxyl amino acids in positions from 324 to 328 was studied for Xenopus laevis CK2alpha. Deletions and mutations of these residues were produced in recombinant CK2alpha, which was assayed for kinase activity. Activity dropped 7000-fold upon deletion of amino acids 324-328. The key residues are isoleucine 327 and phenylalanine 324. A three dimensional model of CK2alpha indicates that these hydrophobic residues of helix alphaN may interact with hydrophobic residues in helix alphaE which is linked to the catalytic center.  相似文献   

11.
mRNAs from the alpha- and beta-subunits (mRNA alpha and mRNA beta, respectively) of Torpedo californica (Na,K)-ATPase were injected into Xenopus laevis oocytes either separately or in combination, and the properties of the two subunits synthesized were studied. The alpha-subunit synthesized in oocytes injected with mRNA alpha alone was recovered in both the membrane and cytosol fractions and was susceptible to tryptic attack. When mRNA beta was coinjected with mRNA alpha, almost all the alpha-subunit was found in the membrane fraction and was resistant to trypsin. In all cases, essentially all of the beta-subunit was recovered in the membrane fraction and was resistant to trypsin. As the amount of mRNA beta coinjected increased, the amounts of both the alpha- and beta-subunits as well as (Na,K)-ATPase activity of the membrane fraction increased. These results suggest that the beta-subunit facilitates the correct assembly of the alpha-subunit into the membrane probably by forming a stable complex with the nascent alpha-subunit.  相似文献   

12.
The assembly of nicotinic alpha1beta1gammadelta, alpha3beta4, and alpha7 receptors and 5-hydroxytryptamine 3A (5HT3A) receptors was comparatively evaluated in Xenopus oocytes by blue native PAGE analysis. While alpha1betagammadelta subunits, alpha3beta4 subunits, and 5HT3A subunits combined efficiently to pentamers, alpha7 subunits existed in various assembly states including trimers, tetramers, pentamers, and aggregates. Only alpha7 subunits that completed the assembly process to homopentamers acquired complex-type carbohydrates and appeared at the cell surface. We conclude that Xenopus oocytes have a limited capacity to guide the assembly of alpha7 subunits, but not 5HT3A subunits to homopentamers. Accordingly, ER retention of imperfectly assembled alpha7 subunits rather than inefficient routing of fully assembled alpha7 receptors to the cell surface limits surface expression levels of alpha7 nicotinic acetylcholine receptors.  相似文献   

13.
Congenital isolated thyroid-stimulating hormone (TSH) deficiency is an autosomal recessive disease that manifests as hypothyroidism (cretinism), causing severe mental and growth retardations. Patients were found to have a single base substitution in the codon for the 29th amino acid of the TSH beta subunit gene. The alteration is in the center of the so-called CAGYC region, which consists of an amino acid sequence conserved among all of the known glycoprotein hormone beta subunits. No other nucleotide substitutions have been found in the gene thus far sequenced. Microinjection of the mutated beta mRNAs into Xenopus laevis oocytes led to the formation of conformationally altered beta polypeptides that could not associate with alpha subunits. The mutation created a new recognition site for the enzyme MaeI. Southern blot hybridization of genomic DNA digested with MaeI showed that the patients were homozygous and their parents were heterozygous for the mutation. This test was also used to examine other family members for the disease.  相似文献   

14.
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.  相似文献   

15.
A collection of 126 monoclonal antibodies (mAbs) made against acetylcholine receptors (AChRs) from the electric organs of Torpedo californica or Electrophorus electricus was tested for cross-reactivity with AChRs in cryostat sections of skeletal muscle from Rana pipiens and Xenopus laevis by indirect immunofluorescence. 49 mAbs (39%) cross-reacted with AChRs from Rana, and 25 mAbs (20%) cross-reacted with AChRs from Xenopus. mAbs specific for each of the four subunits of electric organ AChR (alpha, beta, gamma, delta) cross-reacted with AChRs from each amphibian species. mAbs cross-reacting with Xenopus AChRs were, with one exception, a subset of the mAbs cross-reacting with Rana AChRs. The major difference detected between the two species was in binding by mAbs specific for the main immunogenic region (MIR) of the alpha-subunit. Whereas 22 of 33 anti-MIR mAbs tested cross-reacted with Rana AChRs, only one of these mAbs cross-reacted with Xenopus AChRs. Some (32) of the cross-reacting mAbs were tested for binding to AChRs in intact muscle. 21 of these mAbs bound to AChRs only when membranes were made permeable with saponin. Electron microscopy using immunoperoxidase or colloidal gold techniques revealed that these mAbs recognize cytoplasmic determinants and that mAbs that do not require saponin in order to bind AChRs in intact muscle recognize extracellular determinants. These results suggest that AChRs in skeletal muscle of Rana and Xenopus are composed of subunits corresponding to the alpha-, beta-, gamma-, and delta-subunits of AChRs from fish electric organs. The subunit specificity of mAbs whose binding was examined by electron microscopy suggests that parts of each subunit (alpha, beta, gamma, delta) are exposed on the cytoplasmic surface and that, as in AChRs from fish electric organs and mammalian muscle, the MIR on alpha-subunits of Rana AChRs is exposed on the extracellular surface.  相似文献   

16.
End-labelled oligodeoxynucleotides were injected into Xenopus laevis oocytes and their degradation products were analysed by high-performance ion-exchange liquid chromatography after various times of incubation. The oligonucleotides were synthesised with either the natural [beta] anomers or the synthetic [alpha] anomers of deoxynucleotide units. Oligo-[beta] deoxynucleotides are short-lived inside oocytes (half-life approximately equal to 10 min). Covalent attachment of an intercalating agent to the 3'-phosphate and of a methylthiophosphate group at the 5'-end protects oligodeoxynucleotides against 3'- and 5'-exonucleases, respectively. The half-life of such substituted oligodeoxynucleotides is increased to 40 minutes. Oligo-[alpha]-deoxynucleotides are quite resistant to both endo and exonucleases inside Xenopus oocytes. After 8 hours only 40% of a 16-mer oligo-[alpha]-deoxynucleotide were hydrolysed. The rapid degradation of oligo-[beta]-deoxynucleotides suggests that efficient inhibition of translation in Xenopus oocytes involves an RNase H-induced hydrolysis of mRNAs hybridized to oligo-[beta]-deoxynucleotides.  相似文献   

17.
The protein synthesis initiation factor 2 (eIF2) from Xenopus laevis oocytes has been extensively purified and characterized. Depending upon the purification scheme, eIF2 containing three subunits (alpha, beta and gamma) with Mr of 160,000, or two subunits (alpha and gamma) with Mr 90,000 can be obtained. The key step for obtaining the three subunit factor is the addition of 30 mM benzamidine to the initial homogenization, since this compound protects the highly sensitive beta subunit from proteolytic degradation. Subunit alpha of the oocyte eIF2 can be phosphorylated by the specific kinase from rabbit reticulocytes, whereas subunit beta is phosphorylated by oocyte casein kinase II. The oocyte eIF2 has a KD of 7.2 X 10(-8) M for GDP and 3.8 X 10(-6) M for GTP. The purified three subunit eIF2 has 0.4 mol of GDP bound/mol of factor. The crude preparations of eIF2 are not affected by Mg2+ in their exchange of guanine nucleotides or in the formation of ternary complexes with GTP and methionyl-tRNA, but these reactions are strongly inhibited by Mg2+ when the highly purified preparations are used.  相似文献   

18.
The nucleotide sequence of human thyroid stimulating hormone (hTSH) gene can encode a protein of 138 amino acids. However, the mature polypeptide is lacking 6 amino acids of the carboxyl-terminus (C-terminus), suggesting posttranslational cleavage of these residues. To analyze a possible function of these 6 amino acids, we expressed two hTSH beta cDNAs with or without the 6 codons for C-terminal extension, together with alpha subunit cDNA in CHO cells, and determined the amino acid sequence of C-terminus of hTSH beta. hTSH beta propeptides without C-terminal extension were glycosylated, associated with alpha subunit and secreted, as normal propeptides were, and its heterodimer with alpha subunit showed normal TSH bioactivity in FRTL-5 bioassay. These data indicate that the 6 amino acid C-terminal extension is not necessary for the hTSH maturation in the process of the biosynthesis and for its bioactivity.  相似文献   

19.
The physiological properties of most ion channels are defined experimentally by functional expression of their pore-forming alpha subunits in Xenopus laevis oocytes. Here, we cloned a family of Xenopus KCNE genes that encode MinK-related peptide K(+) channel beta subunits (xMiRPs) and demonstrated their constitutive expression in oocytes. Electrophysiological analysis of xMiRP2 revealed that when overexpressed this gene modulates human cardiac K(+) channel alpha subunits HERG (human ether-a-go-go-related gene) and KCNQ1 by suppressing HERG currents and removing the voltage dependence of KCNQ1 activation. The ability of endogenous levels of xMiRP2 to contribute to the biophysical attributes of overexpressed mammalian K(+) channels in oocyte studies was assessed next. Injection of an xMiRP2 sequence-specific short interfering RNA (siRNA) oligo reduced endogenous xMiRP2 expression 5-fold, whereas a control siRNA oligo had no effect, indicating the effectiveness of the RNA interference technique in Xenopus oocytes. The functional effects of endogenous xMiRP2 silencing were tested using electrophysiological analysis of heterologously expressed HERG channels. The RNA interference-mediated reduction of endogenous xMiRP2 expression increased macroscopic HERG current as much as 10-fold depending on HERG cRNA concentration. The functional effects of human MiRP1 (hMiRP1)/HERG interaction were also affected by endogenous xMiRP2. At high HERG channel density, at which the effects of endogenous xMiRP2 are minimal, hMiRP1 reduced HERG current. At low HERG current density, hMiRP1 paradoxically up-regulated HERG current, a result consistent with hMiRP1 rescuing HERG from suppression by endogenous xMiRP2. Thus, endogenous Xenopus MiRP subunits contribute to the base-line properties of K(+) channels like HERG in oocyte expression studies, which could explain expression level- and expression system-dependent variation in K(+) channel function.  相似文献   

20.
Cyclic nucleotide-gated channels are tetramers composed of homologous alpha and beta subunits. C-terminal truncation mutants of the alpha and beta subunits of the retinal rod channel were expressed in Xenopus oocytes, and analyzed for cGMP- and cAMP-induced currents (single-channel records and macroscopic currents). When the alpha subunit truncated downstream of the cGMP-binding site (alpha D608stop) is co-injected with truncated beta subunits, the heteromeric channels present a drastic increase of cAMP sensitivity. A partial effect is observed with heteromeric alpha R656stop-containing channels, while alpha K665stop-containing channels behave like alpha wt/beta wt. The three truncated alpha subunits have wild-type activity when expressed alone. Heteromeric channels composed of alpha wt or truncated alpha subunits and chimeric beta subunits containing the pore domain of the alpha subunit have the same cAMP sensitivity as alpha-only channels. The results disclose the key role of two domains distinct from the nucleotide binding site in the gating of heteromeric channels by cAMP: the pore of the beta subunit, which has an activating effect, and a conserved domain situated downstream of the cGMP-binding site in the alpha subunit (I609-K665), which inhibits this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号