首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The introduction of new paramagnetic shift reagents in the nuclear magnetic resonance (NMR) method has made it possible to distinguish intra- and extracellular ions in tissues or organs in vitro. We measured the intra- and extracellular 23Na and 1H in vivo in the gerbil brain and skeletal muscle by NMR spectroscopy employing the shift reagent, dysprosium triethylenetetraminehexaacetate (Dy[TTHA]3-). Without Dy(TTHA)3-, the 23Na and 1H signals were seen only as single peaks, but gradual intravenous infusion of Dy(TTHA)3- separated these signals into two peaks, respectively. The unshifted peaks reflected the intracellular 23Na and 1H signals, while the shifted peaks reflected the extracellular signals. In the brain spectra, an additional small peak, which represented intravascular signals, was detected and its intensity increased after injection of papaverine hydrochloride. The present method is advantageous over the microelectrode technique because of its nondestructiveness and its capability for obtaining intra- and extracellular volume information from measurements of the 1H spectra, the peaks of which reflect the intra- and extracellular water amounts. The intracellular Na+ increase associating with increased cellular volume after ouabain in the muscle was clearly visualized by this method. The technique is clearly of use for physiological and pathophysiological studies of organs.  相似文献   

2.
This study explores the effect of extracellular Ca2+ concentration ([Ca2+]o), on the intracellular Na+ concentration ([Na+]i), in frog intact hearts using nuclear magnetic resonance spectroscopy, which allows for the measurement of [Na+]i in perfused, beating hearts. Decreases in [Ca2+]o yielded marked increases in [Na+]i. A similar effect was seen during inhibition of the Na+/K+ pump and was fully reversible. This sensitivity of [Na+]i to [Ca2+]o, previously observed using microelectrodes, supports a crucial physiological role for Na+/Ca2+ exchange in frog intact, beating hearts.  相似文献   

3.
Multinuclear NMR studies of the Langendorff perfused rat heart   总被引:1,自引:0,他引:1  
The quantitation of intracellular sodium ion concentration [Na+]in perfused organs using NMR spectroscopy requires a knowledge of the extent of visibility of the 23Na resonance and of the intracellular volume of the organ. We have used a multinuclear NMR approach, in combination with the extracellular shift reagent dysprosium (III) tripolyphosphate, to determine the NMR visibility of intra- and extracellular 23Na and 35Cl ions, intracellular volume, and [Na+]in in the isolated Langendorff perfused rat heart. Based on a comparison of the extracellular volumes calculated using 2H and 23Na, 35Cl, or 59Co NMR of the perfused heart we conclude that resonances of extracellular sodium and chloride ions (including ions in interstitial spaces) are fully visible, contrary to assumptions in the literature. Furthermore, prolonged hypoxia or ischemia caused a dramatic increase in intracellular Na+ and [Na+] in rose to approach that in the external medium indicating full visibility of the intracellular 23Na resonance. Resonance intensities of intra- and extracellular 23Na ions, along with a knowledge of the extracellular space as a fraction of the total organ water space, yielded an average [Na+] in of about 10 mM (10 +/- 1.5 mM) for the rat heart at 37 degrees C. Double-quantum filtered 23Na NMR of the perfused rat heart in the absence and presence of paramagnetic reagents revealed, contrary to assumptions in the literature, that both intra- and extracellular sodium ions contribute to the detected signal.  相似文献   

4.
The concentration of intracellular sodium [Na+]i has been measured in the perfused rat kidney using 23Na nuclear magnetic resonance (NMR) in combination with the extracellular shift reagent Dy(PPPi)7-(2). The data show 100% visibility of Na+ in interstitial spaces. A measurement of the resonance intensities of intra- and extracellular 23Na ions along with a knowledge of the extracellular space as a fraction of the total kidney water space yielded an average [Na+]i of 27 +/- 2 mM for the kidney at 37 degrees C. After prolonged ischemia [Na+]i rose to approach that in the external medium. In the absence of 5% albumin in the perfusion medium, the linewidth of the 35Cl resonance of an adult kidney (45 Hz) was about twofold larger than that of the medium alone (25 Hz). In contrast, the linewidth of 35Cl resonance of an adult kidney perfused with an albumin-containing medium (82 Hz) was only about 27% of that from the medium alone (300 Hz). We interpret this effect to be due to compartmentation of albumin in the extracellular space such that the interstitial space is not freely accessible to albumin. However, for a developing, immature kidney from a growing animal, perfused with an albumin-containing medium, the linewidth of the 35Cl resonance (233 Hz) was only slightly less than that of the medium alone (300 Hz), indicating a much greater albumin permeability of the capillary walls. 19F NMR of a perfused adult kidney, loaded with the membrane-impermeant intracellular calcium indicator 5FBAPTA, yielded a value of 256 nM for [Ca2+]i. Induction of ischemia for 10 min caused the [Ca2+]i to rapidly rise to 660 nM, which could not be fully reversed by reperfusion, suggesting irreversible injury.  相似文献   

5.
The dependence of Na pump activity on intracellular and extracellular Na+ and K+ was investigated using a suspension of rabbit cortical tubules that contained mostly (86%) proximal tubules. The ouabain- sensitive rate of respiration (QO2) was used to measure the Na pump activity of intact tubules, and the Na,K-ATPase hydrolytic activity was measured using lysed proximal tubule membranes. The dependence (K0.5) of the Na pump on intracellular Na+ was affected by the relative intracellular concentration of K+, ranging from approximately 10 to 15 mM at low K+ and increasing to approximately 30 mM as the intracellular K+ was increased. The Na pump had a K0.5 for extracellular K+ of 1.3 mM in the presence of saturating concentrations of intracellular Na+. Measurements of the Na,K-ATPase activity under comparable conditions rendered similar values for the K0.5 of Na+ and K+. The Na pump activity in the intact tubules saturated as a function of extracellular Na at approximately 80 mM Na, with a K0.5 of 30 mM. Since Na pump activity under these conditions could be further stimulated by increasing Na+ entry with the cationophore nystatin, these values pertain to the Na+ entry step and not to the Na+ dependence of the intracellular Na+ site. When tubules were exposed to different extracellular K+ concentrations and the intracellular Na+ concentration was subsaturating, the Na pump had an apparent K0.5 of 0.4 mM for extracellular K. Under normal physiological conditions, the Na pump is unsaturated with respect to intracellular Na+, and indirect analysis suggests that the proximal cell may have an intracellular Na+ concentration of approximately 35 mM.  相似文献   

6.
The intracellular sodium concentration in the amoebae from the slime mold Dictyostelium discoideum has been studied using 23Na NMR. The 23Na resonances from intracellular and extracellular compartments could be observed separately in the presence of the anionic shift reagent Dy(PPPi)7-2 which does not enter into the amoebae and thus selectively affects Na+ in the extracellular space. 31P NMR was used to control the absence of cellular toxicity of the shift reagent. The intracellular Na+ content was calculated by comparison of the intensities of the two distinct peaks arising from the intra- and extracellular spaces. It remained low (0.6 to 3 mM) in the presence of external Na+ (20 to 70 mM), and a large Na+ gradient (20- to 40-fold) was maintained. A rapid reloading of cells previously depleted of Na+ was readily measured by 23Na NMR. Nystatin, an antibiotic known to perturb the ion permeability of membranes, increased the intracellular Na+ concentration. The time dependence of the 23Na and 31P NMR spectra showed a rapid degradation of Dy(PPPi)7-2 which may be catalyzed by an acid phosphatase.  相似文献   

7.
In order to measure intracellular sodium concentrations in resting cells of Fibrobacter succinogenes S85 by (23)Na NMR spectrometry, two methodological aspects were studied. First, three different shift reagents (Dy(PPP(i))(7-)(2), Tm(DOTP)(5-), and Dy(TTHA)(3-)) were tested for their ability to separate internal and external (23)Na NMR resonances. Their toxicity toward F. succinogenes cells was evaluated by in vivo(13)C NMR experiments. Tm(DOTP)(5-) was found to be the most efficient shift reagent while being nontoxic. Second, a new methodology was developed to calculate intracellular sodium concentration in F. succinogenes by using ionophores. This approach avoided the problem of intracellular volume measurement and that of sodium visibility determination.  相似文献   

8.
Current generated by the electrogenic Na+/K+ pump protein was determined in oocytes of Xenopus laevis as strophantidine-sensitive current measured under voltage clamp. Under conditions of reduced intracellular [Na+] and [ATP], both to values below 1 mM, and in extracellularly K(+)-free medium, the Na+/K+ pump seems to operate in a reversed mode pumping Na+ into the cell and K+ out of the cell. This is demonstrated by strophantidine-induced hyperpolarization of the membrane and inward-directed current mediated by the pump protein. In addition, strophantidine-sensitive uptake of 22Na+ can be demonstrated under these conditions. The pump current decreases with membrane depolarization as expected for a pump cycle that involves inward movement of positive charges during Na+ translocation.  相似文献   

9.
The total Na+ and both the intra- and extracellular Na+ content of excised rat and frog tissues was quantitated by 23Na NMR at 95.51 MHz. An external capillary containing 33 mM Na7[Dy(P3O10)2], resonating about 30 ppm upfield relative to the 0.00 ppm of the intracellular Na+, was inserted into the tissues. The capillary was calibrated against a concentration range of pure NaCl solution, for measurement of intracellular Na+, and against the same concentrations of NaCl solutions containing 4-6 mM K7[Dy(P3O10)2] in 50 mM histidine. Cl and 100 mM choline. Cl, for measurement of extracellular Na+. Spectra were recorded on tissues first in the absence of the shift reagent for determination of the total Na+. After addition of a K7[Dy(P3O10)2] solution to the sample, the 23Na spectra were recorded immediately so that data accumulation was completed within 15 min. Under these conditions, the extracellular Na+ resonated from 10 to 20 ppm upfield relative to the intracellular Na+, and no loss in the intensity of the extracellular Na+ resonance occurred due to the lability of dysprosium(III)tripolyphosphate (cf. Matwiyoff et al., Magn. Reson. Med. 3: 164, 1986). The intra- and extracellular Na+ content of the tissue was calculated from the integrated areas of the respective Na+ resonances and that of the calibrated capillary, from the known weight of the tissue, and from the known volumes of the solutions added.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Long term elevation of the intracellular Na+/K+ ratio inhibits macromolecule synthesis and proliferation in the majority of cell types studied so far, including vascular smooth muscle cells (VSMC). We report here that inhibition of the Na+,K+ pump in VSMC by ouabain or a 1-h preincubation in K+-depleted medium attenuated apoptosis triggered by serum withdrawal, staurosporine, or okadaic acid. In the absence of ouabain, both DNA degradation and Caspase-3 activation in VSMC undergoing apoptosis were insensitive to modification of the extracellular Na+/K+ ratio as well as to hyperosmotic cell shrinkage. In contrast, protection of VSMC from apoptosis by ouabain was abolished under equimolar substitution of Na+o with K+o, showing that the antiapoptotic action of Na+,K+ pump inhibition was caused by inversion of the intracellular Na+/K+ ratio. Unlike VSMC, the same level of increment of the [Na+]i/[K+]i ratio caused by a 2-h preincubation of Jurkat cells with ouabain did not affect chromatin cleavage and Caspase-3 activity triggered by treatment with Fas ligand, staurosporine, or hyperosmotic shrinkage. Thus, our results show for the first time that similar to cell proliferation, maintenance of a physiologically low intracellular Na+/K+ ratio is required for progression of VSMC apoptosis.  相似文献   

11.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   

12.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40-60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10(-3) mol/l) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+ :K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

13.
Cation transport in erythrocytes of some uremic patients is impaired. Most studies have focused on the defect of the erythrocyte Na+/K+ pump in these diseased states. Herein, this cation transport defect was studied by using nuclear magnetic resonance spectroscopy (NMR) which is a non-invasive method permitting study on living erythrocytes. Firstly, we verified that the Na+ transport defect in uremic erythrocytes was not due to non-specific causes such as membrane alteration or a modification of the intracellular metabolism. The proton relaxation data, determined using a paramagnetic doping method, are consistent with a lack of erythrocytic membrane damage in uremic patients. Also, 31P-NMR results showed that in our experimental conditions, uremic and normal erythrocytes exhibit similar variations of ATP level over time. Lastly, the use of anionic paramagnetic shift reagent in 23Na-NMR revealed a defect in the Na+/K+ pump of erythrocytes from uremic patients with high Nain concentration. This defect seems to be due to a reduced number of pump units and to the presence of an endogenous inhibitor in uremic plasma.  相似文献   

14.
Escherichia coli is known to actively extrude sodium ions, but little is known concerning the concentration gradient it can develop. We report here simultaneous measurements, by 23Na NMR, of intracellular and extracellular Na+ concentrations of E. coli cells before and after energization. 23Na spectra in the presence of a paramagnetic shift reagent (dysprosium tripolyphosphate) consisted of two resonances, an unshifted one corresponding to intracellular Na+ and a shifted one corresponding to Na+ in the extracellular medium, including the periplasm. Extracellular Na+ was found to be completely visible despite the presence of a broad component in its resonance; intracellular Na+ was only 45% visible. Measurements of Na+ were made under aerobic and glycolytic conditions. Na+ extrusion and maintenance of a stable low intracellular Na+ concentration were found to correlate with the development and maintenance of proton motive force, a result that is consistent with proton-driven Na+/H+ exchange as a means of Na+ transport. In both respiring and glycolyzing cells, at an extracellular Na+ concentration of 100 mM, the intracellular Na+ concentration observed (4 mM) corresponded to an inwardly directed Na+ gradient with a concentration ratio of about 25. The kinetics of Na+ transport suggest that rapid extrusion of Na+ against its electrochemical gradient may be regulated by proton motive force or intracellular pH.  相似文献   

15.
Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, zero calcium), and IC50 of ATP for IK-ATP (0.3 +/- 0.1 mM) by 2/5. The Na+/Li+ replacement had no effect on IK-ATP at low pump activity ([ATP] </= 0.1 mM or 100 microM ouabain) or when IK-ATP was completely inhibited by 10 mM ATP. In whole-cell configuration, ouabain inhibited up to 60% of inwardly rectifying IK-ATP at 1 mM ATP in the pipette but not at 10 mM ATP and 10 mM phosphocreatine when IK-ATP was always blocked. However, mathematical simulation of giant-patch experiments revealed that only 20% of ATP depletion may be attributed to the ATP concentration gradient in the bulk solution, and the remaining 80% probably occurs in the submembrane space.  相似文献   

16.
Two functionally different Na/K pumps in cardiac ventricular myocytes   总被引:8,自引:1,他引:7  
The whole-cell patch-clamp technique was used to voltage clamp acutely isolated myocytes at -60 mV and study effects of ionic environment on Na/K pump activity. In quiescent guinea pig myocytes, normal intracellular Na+ is approximately 6 mM, which gives a total pump current of 0.25 +/- 0.09 pA/pF, and an inward background sodium current of 0.75 +/- 0.26 pA/pF. The average capacitance of a cell is 189 +/- 61 pF. Our main conclusion is the total Na/K pump current comprises currents from two different types of pumps, whose functional responses to the extracellular environment are different. Pump current was reversibly blocked with two affinities by extracellular dihydro-ouabain (DHO). We determined dissociation constants of 72 microM for low affinity (type-1) pumps and 0.75 microM for high affinity (type-h) pumps. These dissociation constants did not detectably change with two intracellular Na+ concentrations, one saturating and one near half- saturating, and with two extracellular K+ concentrations of 4.6 and 1.0 mM. Ion effects on type-h pumps were therefore measured using 5 microM DHO and on total pump current using 1 mM DHO. Extracellular K+ half- maximally activated the type-h pumps at 0.4 mM and the type-1 at 3.7 mM. Extracellular H+ blocked the type-1 pumps with half-maximal blockade at a pH of 7.71 whereas the type-h pumps were insensitive to extracellular pH. Both types of pumps responded similarly to changes in intracellular-Na+, with 9.6 mM causing half-maximal activation. Neither changes in intracellular pH between 6.0 and 7.2, nor concentrations of intracellular K+ of 140 mM or below, had any effect on either type of pump. The lack of any effect of intracellular K+ suggests the dissociation constants are in the molar range so this step in the pump cycle is not rate limiting under normal physiological conditions. Changes in intracellular-Na+ did not affect the half-maximal activation by extracellular K+, and vice versa. We found DHO-blockade of Na/K pump current in canine ventricular myocytes also occurred with two affinities, which are very similar to those from guinea pig myocytes or rat ventricular myocytes. In contrast, isolated canine Purkinje myocytes have predominantly the type-h pumps, insofar as DHO-blockade and extracellular K+ activation are much closer to our type-h results than type-1. These observations suggest for mammalian ventricular myocytes: (a) the presence of two types of Na/K pumps may be a general property. (b) Normal physiological variations in extracellular pH and K+ are important determinants of Na/K pump current. (c) Normal physiological variations in the intracellular environment affect Na/K pump current primarily via the Na+ concentration. Lastly, Na/K pump current appears to be specifically tailored for a tissue by expression of a mix of functionally different types of pumps.  相似文献   

17.
The early activation of Na+,K+-ATPase-mediated ion fluxes after concanavalin A (ConA) stimulation of pig lymphocytes is caused by an increase in intracellular Na+ concentration. A second mechanism of regulation of Na+,K+-ATPase activity becomes apparent between 3 and 5 h after mitogenic stimulation, but prior to onset of increase in cell volume; this consists of an increase (about 75%) in the number of ouabain-binding sites (from 35 X 10(3) +/- 12 X 10(3)/cell in resting to 60 X 10(3) +/- 27 X 10(3)/cell in activated lymphocytes). The increase in ouabain binding was attributed to an increase in the number of active Na+,K+-ATPase molecules, based on the following evidence: there was an increase in the Vmax of ouabain binding, without variation in the Km; the increase in ouabain binding was accompanied by a proportional increase in K+ influx, when the assay was performed in the presence of the Na+ ionophore monesin, which was used to eliminate the difference in intracellular Na+ concentration between resting and activated cells; there was proportionality between ouabain-inhibitable ATPase activity in permeabilized cells and the number of ouabain-binding sites in resting and activated lymphocytes. The ConA-induced increase in ouabain-binding sites was influenced neither by amiloride nor by incubation in low Na+ medium, under conditions which prevented both increase in intracellular Na+ concentration and K+ influx. Increase in intracellular Na+ concentration was ineffective in altering the number of active pump molecules in resting cells. During incubation with ConA, the presence of ouabain did not affect the increase in ouabain-binding sites; thus, regulation of the number of pump sites is independent of the regulation of their activity. The ConA-induced increase in number of ouabain-binding sites did not require protein synthesis; indeed, cycloheximide, anisomycin, and puromycin, under conditions in which they inhibited protein synthesis by by 95%, induced the increase to approximately the same extent as did ConA. This suggests the presence in resting lymphocytes of a rapidly turning over protein that either prevents the ATPase subunits from assembling or from integrating into the membrane.  相似文献   

18.
Cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but later recover their volume with an associated KCl loss. This regulatory volume decrease (RVD) is unaffected when nitrate is substituted for Cl- or if bumetanide or 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) is added. It is inhibited by quinine, Ba2+, low pH, anticalmodulin drugs, and depletion of intracellular Ca2+. It is accelerated by the Ca2+ ionophore A23187, or by a sudden increase in external Ca2+ and at high pH. A net KCl loss is also seen after addition of ionophore A23187 in isotonic medium. Similarities are demonstrated between the KCl loss seen after addition of A23187 and the KCl loss seen during RVD. It is proposed that separate conductive K+ and Cl- channels are activated during RVD by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin. After restoration of tonicity the cells shrink initially, but recover their volume with an associated KCl uptake. This regulatory volume increase (RVI) is inhibited when NO3- is substituted for Cl-, and is also inhibited by furosemide or bumetanide, but it is unaffected by DIDS. The unidirectional Cl-flux ratio is compatible with either a coupled uptake of Na+ and Cl-, or an uptake via a K+/Na+/2Cl- cotransport system. No K+ uptake was found, however, in ouabain-poisoned cells where a bumetanide-sensitive uptake of Na+ and Cl- in nearly equimolar amounts was demonstrated. Therefore, it is proposed that the primary process during RVI is an activation of an otherwise quiescent Na+/Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump. There is a marked increase in the rate of pump activity in the absence of a detectable increase in intracellular Na+ concentration.  相似文献   

19.
A cascade of events (signal-transduction), mainly seen in rat cardiac myocytes and renal cells, is thought to occur after ouabain interaction with a minor fraction of Na+/K+-ATPase. A higher intracellular Na+ concentration followed sodium pump inhibition by ouabain with a subsequent gradual increase or oscillations in intracellular Ca2+ concentration. Whether this increase in intracellular Ca2+ concentration is part of the cascade, a result of the cascade or a totally independent phenomenon are conflicting interpretations that are discussed. At best, however, the cascade is initiated by ouabain concentrations several orders of magnitude higher than the measured plasma concentrations of putative endogenous ouabain. The experimentally high ouabain concentration may be critical for another reason. Most tissues contain various isoforms of the catalytic alpha-peptide of Na+/K+-ATPase with an individual sublocalization and, in rats, with different ouabain-sensitivity. The almost ouabain-insensitive alpha1-isoform of Na+/K+-ATPase is essentially unaffected by the high ouabain concentration, whereas ouabain-sensitive alpha-isoforms, possibly confined to membrane structures near cytosolic microdomains and Na+/Ca2+ exchangers, may be totally blocked. Classifying endogenous ouabain as a physiological inducer of the signaling system on this background seems hazardous.  相似文献   

20.
The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive 86Rb+ uptake (a measure of Na+/K+ pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na+ entry into the cells. The effect of bombesin on Na+ entry and Na+/K+ pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive 86Rb+ uptake; the relative potencies of these peptides in stimulating the Na+/K+ pump were comparable to their potencies in increasing DNA synthesis (Zachary, I., and E. Rozengurt, 1985, Proc. Natl. Acad. Sci. USA., 82:7616-7620). Bombesin increased Na+ influx, at least in part, through an Na+/H+ antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na+. In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of 45Ca2+ from quiescent Swiss 3T3 cells. This Ca2+ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca2+. The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity (Rodriguez-Pena, A., and E. Rozengurt, 1984, Biochem. Biophys. Res. Commun., 120:1053-1059), greatly decreased the stimulation of 86Rb+ uptake and Na+ entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号