首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The sex-determination genes of Drosophila act to repress the developmental pathway for the internal somatic reproductive organs of the opposite sex. By misregulating this pathway during preadult development, the organ-specific expression pattern of the glucose dehydrogenase gene (Gld) in the reproductive tract of adult flies has been changed without a concomitant sexual transformation of the reproductive organs. Misregulation of the tra, tra-2, and dsx genes leads to very similar patterns of ectopic expression of Gld. The induced ectopic patterns of Gld expression at the adult stage occur in a small subset of organs which all normally express the Gld gene during their morphogenesis. These ectopic patterns are irrevocably set during late larval-early pupal development. The normal pattern of Gld expression in several other Drosophila species is quite similar to the ectopic patterns which we have generated in D. melanogaster, suggesting that the interspecific variation in Gld expression may result from variation in the expression of the sex-determination genes.  相似文献   

3.
Evolution of the glucose dehydrogenase gene in Drosophila   总被引:5,自引:0,他引:5  
The glucose dehydrogenase genes (Gld) of Drosophila melanogaster, of D. pseudoobscura, and of D. virilis have been isolated and compared with each other in order to identify conserved and divergent aspects of their structure and expression. The exon/intron structure of Gld is conserved. The Gld mRNAs are similar, with a range of 2.6-2.8 kb among the three species. All three species exhibit peaks of Gld expression during every major developmental stage, although considerable variation in the precise timing of these peaks exists between species. Interspecific gene transfer experiments demonstrate that the regulation and function of the D. pseudoobscura Gld is similar enough to the homologous gene in D. melanogaster to substitute for its essential role in the eclosion process. Comparison of the putative promoter sequences has identified both shared and divergent sequence elements which are likely responsible, respectively, for the conserved and divergent patterns of expression observed. The entire coding sequences of the pseudoobscura and melanogaster Gld genes are presented and shown to encode a 612-amino-acid pre-protein. The inferred amino acid sequences are 92% conserved between the two species. In general the intronic regions of Gld are unusually well conserved.  相似文献   

4.
We have developed a new system of chromosomal mutagenesis in order to study the functions of uncharacterized open reading frames (ORFs) in wild-type Escherichia coli. Because of the operon structure of this organism, traditional methods such as insertional mutagenesis run the risk of introducing polar effects on downstream genes or creating secondary mutations elsewhere in the genome. Our system uses crossover PCR to create in-frame, tagged deletions in chromosomal DNA. These deletions are placed in the E. coli chromosome by using plasmid pKO3, a gene replacement vector that contains a temperature-sensitive origin of replication and markers for positive and negative selection for chromosomal integration and excision. Using kanamycin resistance (Kn(r)) insertional alleles of the essential genes pepM and rpsB cloned into the replacement vector, we calibrated the system for the expected results when essential genes are deleted. Two poorly understood genes, hdeA and yjbJ, encoding highly abundant proteins were selected as targets for this approach. When the system was used to replace chromosomal hdeA with insertional alleles, we observed vastly different results that were dependent on the exact nature of the insertions. When a Kn(r) gene was inserted into hdeA at two different locations and orientations, both essential and nonessential phenotypes were seen. Using PCR-generated deletions, we were able to make in-frame deletion strains of both hdeA and yjbJ. The two genes proved to be nonessential in both rich and glucose-minimal media. In competition experiments using isogenic strains, the strain with the insertional allele of yjbJ showed growth rates different from those of the strain with the deletion allele of yjbJ. These results illustrate that in-frame, unmarked deletions are among the most reliable types of mutations available for wild-type E. coli. Because these strains are isogenic with the exception of their deleted ORFs, they may be used in competition with one another to reveal phenotypes not apparent when cultured singly.  相似文献   

5.
To define the extent of the modification of the nuclear pore complex (NPC) during Aspergillus nidulans closed mitosis, a systematic analysis of nuclear transport genes has been completed. Thirty genes have been deleted defining 12 nonessential and 18 essential genes. Several of the nonessential deletions caused conditional phenotypes and self-sterility, whereas deletion of some essential genes caused defects in nuclear structure. Live cell imaging of endogenously tagged NPC proteins (Nups) revealed that during mitosis 14 predicted peripheral Nups, including all FG repeat Nups, disperse throughout the cell. A core mitotic NPC structure consisting of membrane Nups, all components of the An-Nup84 subcomplex, An-Nup170, and surprisingly, An-Gle1 remained throughout mitosis. We propose this minimal mitotic NPC core provides a conduit across the nuclear envelope and acts as a scaffold to which dispersed Nups return during mitotic exit. Further, unlike other dispersed Nups, An-Nup2 locates exclusively to mitotic chromatin, suggesting it may have a novel mitotic role in addition to its nuclear transport functions. Importantly, its deletion causes lethality and defects in DNA segregation. This work defines the dramatic changes in NPC composition during A. nidulans mitosis and provides insight into how NPC disassembly may be integrated with mitosis.  相似文献   

6.
7.
The seven transmembrane receptor (str) and srj (renamed from stl) families of chemoreceptors have been updated and the genes formally named following completion of the Caenorhabditis elegans genome sequencing project. Analysis of gene locations revealed that 84% of the 320 genes and pseudogenes in these two families reside on the large chromosome V. Movements to other chromosomes, especially chromosome IV, have nevertheless been relatively common, but only one has led to further gene family diversification. Comparisons with homologs in C. briggsae indicated that 22.5% of these genes have been newly formed by gene duplication since the species split, while also showing that four have been lost by large deletions. These patterns of gene evolution are similar to those revealed by analysis of the equally large srh family of chemoreceptors, and are likely to reflect general features of nematode genome dynamics. Thus large random deletions presumably balance the rapid proliferation of genes and their degeneration into pseudogenes, while gene movement within and between chromosomes keeps these nematode genomes in flux.  相似文献   

8.
Genes can be classified as essential or nonessential based on their indispensability for a living organism. Previous researches have suggested that essential genes evolve more slowly than nonessential genes and the impact of gene dispensability on a gene’s evolutionary rate is not as strong as expected. However, findings have not been consistent and evidence is controversial regarding the relationship between the gene indispensability and the rate of gene evolution. Understanding how different classes of genes evolve is essential for a full understanding of evolutionary biology, and may have medical relevance in the design of new antibacterial agents. We therefore performed an investigation into the properties of essential and nonessential genes. Analysis of evolutionary conservation, protein length distribution and amino acid usage between essential and nonessential genes in Escherichia coli K12 demonstrated that essential genes are relatively preserved throughout the bacterial kingdom when compared to nonessential genes. Furthermore, results show that essential genes, compared to nonessential genes, have a significantly higher proportion of large (>534 amino acids) and small proteins (<139 amino acids) relative to medium-sized proteins. The pattern of amino acids usage shows a similar trend for essential and nonessential genes, although some notable exceptions are observed. These findings help to clarify our understanding of the evolutionary mechanisms of essential and nonessential genes, relevant to the study of mutagenesis and possibly allowing prediction of gene properties in other poorly understood organisms.  相似文献   

9.
Keplinger BL  Guo X  Quine J  Feng Y  Cavener DR 《Genetics》2001,157(2):699-716
The Drosophila melanogaster Gld gene has multiple and diverse developmental and physiological functions. We report herein that interactions among proximal promoter elements and a cluster of intronically located enhancers and silencers specify the complex regulation of Gld that underlies its diverse functions. Gld expression in nonreproductive tissues is largely determined by proximal promoter elements with the exception of the embryonic labium where Gld is activated by an enhancer within the first intron. A nuclear protein, GPAL, has been identified that binds the Gpal elements in the proximal promoter region. Regulation of Gld in the reproductive organs is particularly complex, involving interactions among the Gpal proximal promoter elements, a unique TATA box, three distinct enhancer types, and one or more silencer elements. The three somatic reproductive organ enhancers each activate expression in male and female pairs of reproductive organs. One of these pairs, the male ejaculatory duct and female oviduct, are known to be developmentally homologous. We report evidence that the other two pairs of organs are developmentally homologous as well. A comprehensive model to explain the full developmental regulation of Gld and its evolution is presented.  相似文献   

10.
Chromosome rearrangements, especially chromosomal deletions, have been exploited as important resources for functional analysis of genomes. To facilitate this analysis, we applied a previously developed method for chromosome splitting for the direct deletion of a designed internal or terminal chromosomal region carrying many nonessential genes in haploid Saccharomyces cerevisiae. The method, polymerase chain reaction (PCR)-mediated chromosomal deletion (PCD), consists of a two-step PCR and one transformation per deletion event. In this paper, we show that the PCD method efficiently deletes internal regions in a single transformation. Of the six chromosomal regions targeted for deletion by this method, five regions (16 to 38 kb in length) containing 10 to 19 nonessential genes were successfully eliminated at high efficiency. The one targeted region on chromosome XIII that was not deleted was subsequently found to contain sequences essential for yeast growth. While 14 individual genes in this region have been reported to be nonessential, synthetic lethal interactions may occur among these nonessential genes. Phenotypic analysis showed that four deletion strains still exhibited normal growth while possible synthetic growth defects were observed in another strain harboring a 19-gene deletion on chromosome XV. These results demonstrate that the PCD method is a useful tool for deleting genes and for analyzing their functions in defined chromosomal regions.  相似文献   

11.
Deletions of the short arm of chromosome 9 with a minimum region of overlap at band 9p22 are frequently observed in acute lymphoblastic leukemia and in gliomas. They also occur at a lower frequency in lymphomas, melanomas, lung cancers, and other solid tumors. These deletions often include the entire interferon (IFN) gene cluster, which comprises about 26 interferon-alpha (IFNA), -omega (IFNW), and-beta-1 (IFNB1) interferon genes, as well as the gene for the enzyme methylthioadenosine phosphorylase (MTAP). By comparing microscopic deletions with the genes lost at the molecular level, we have determined the order of these genes on 9p to be telomere-IFNB1-IFNA/IFNW cluster-MTAP-centromere. In a few cell lines and in primary leukemia cells, we have observed deletions that have breakpoints within the IFN gene cluster and result in partial loss of the IFN genes. These partial deletions allowed us to determine the order of some genes or groups of genes within the IFNA/IFNW gene cluster. Our current results map the shortest region of overlap of these deletions in the various tumors to the region between the centromeric end of the IFNA/IFNW gene cluster and the MTAP gene locus.  相似文献   

12.
Septin proteins are conserved structural proteins that often demarcate regions of cell division. The essential nature of the septin ring, composed of several septin proteins, complicates investigation of the functions of the ring, although careful analysis in the model yeast Saccharomyces cerevisiae has elucidated the role that septins play in the cell cycle. Mutation analysis of nonessential septins in the pathogenic fungus Candida albicans has shown that septins also have vital roles in cell wall regulation (CWR), hyphal formation, and pathogenesis. While mutations in nonessential septins have been useful in establishing phenotypes, the septin defect is so slight that identifying causative associations between septins and downstream effectors has been difficult. In this work, we describe decreased abundance by mRNA perturbation (DAmP) alleles of essential septins, which display a septin defect more severe than the defect observed in deletions of nonessential septins. The septin DAmP alleles have allowed us to genetically separate the roles of septins in hyphal growth and CWR and to identify the cyclic AMP pathway as a pathway that likely acts in a parallel manner with septins in hyphal morphogenesis.  相似文献   

13.
We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.  相似文献   

14.
The region of the third chromosome (84D-F) of Drosophila melanogaster that contains the doublesex (dsx) locus has been cytogenetically analyzed. Twenty nine newly induced, and 42 preexisting rearrangements broken in dsx and the regions flanking dsx have been cytologically and genetically characterized. These studies established that the dsx locus is in salivary chromosome band 84E1-2. In addition, these observations provide strong evidence that the dsx locus functions only to regulate sexual differentiation and does not encode a vital function. To obtain new alleles at the dsx locus and to begin to analyze the genes flanking dsx, 59 lethal and visible mutations in a region encompassing dsx were induced. These mutations together with preexisting mutations in the region were deficiency mapped and placed into complementation groups. Among the mutations we isolated, four new mutations affecting sexual differentiation were identified. All proved to be alleles of dsx, suggesting that dsx is the only gene in this region involved in regulating sexual differentiation. All but one of the new dsx alleles have equivalent effects in males and females. The exception, dsxEFH55, strongly affects female sexual differentiation, but only weakly affects male sexual differentiation. The interactions of dsxEFH55 with mutations in other genes affecting sexual differentiation are described. These results are discussed in terms of the recent molecular findings that the dsx locus encodes sex-specific proteins that share in common their amino termini but have different carboxyl termini. The 72 mutations in this region that do not affect sexual differentiation identify 25 complementation groups. A translocation, T(2;3)Es that is associated with a lethal allele in one of these complementation groups is also broken at the engrailed (en) locus on the second chromosome and has a dominant phenotype that may be due to the expression of en in the anterior portion of the abdominal tergites where en is not normally expressed. The essential genes found in the 84D-F region are not evenly distributed throughout this region; most strikingly the 84D1-11 region appears to be devoid of essential genes. It is suggested that the lack of essential genes in this region is due to the region (1) containing genes with nonessential functions and (2) being duplicated, possibly both internally and elsewhere in the genome.  相似文献   

15.
16.
We have discovered a novel DNA sequence element in Drosophila which is based upon a CTGA tandem repeat. This element has been named the YYRR box to emphasize its dipyrimidine-dipurine nature which is predicted to have unusual structural features. Southern hybridization analysis of genomic DNA indicates the presence of 25-30 copies of the YYRR box in each of three Drosophila species (melanogaster, pseudoobscura, and virilis) and conservation of genomic location within species. Similar analysis of human and rat DNA indicates the presence of YYRR related sequences in mammals as well. YYRR boxes have been localized to two genetic loci in Drosophila: Gld and a gene tentative identified as ted. These two genes exhibit correlated patterns of developmental expression and an identical mutant phenotype. Sequence analysis of the Gld YYRR box in three Drosophila species revealed a high degree of conservation despite its intronic location.  相似文献   

17.
Genome shrinkage occurs after whole genome duplications (WGDs) and in the evolution of parasitic or symbiotic species. The dynamics of this process, whether it occurs by single gene deletions or also by larger deletions are however unknown. In yeast, genome shrinkage has occurred after a WGD. Using a computational model of genome evolution, we show that in a random genome single gene deletions cannot explain the observed pattern of gene loss in yeast. The distribution of genes deleted per event can be very well described by a geometric distribution, with a mean of 1.1 genes per event. In terms of deletions of a stretch of base pairs, we find that a geometric distribution with an average of 500-600 base pairs per event describes the data very well. Moreover, in the model, as in the data, gene pairs that have a small intergenic distance are more likely to be both deleted. This proves that simultaneous deletion of multiple genes causes the observed pattern of gene deletions, rather than deletion of functionally clustered genes by selection. Furthermore, we found that in the bacterium Buchnera aphidicola larger deletions than in yeast are necessary to explain the clustering of deleted genes. We show that the excess clustering of deleted genes in B. aphidicola can be explained by the clustering of genes in operons. Therefore, we show that selection has little effect on the clustering of deleted genes after the WGD in yeast, while it has during genome shrinkage in B. aphidicola.  相似文献   

18.

Background  

Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homoeologous genes) encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L.) is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homoeologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation) that frequently generate whole-gene deletions.  相似文献   

19.
The spinocerebellar ataxia type 2 (SCA2) gene has been localized to chromosome 12q24.1. To characterize this region and to aid in the identification of the SCA2 gene, we have constructed a 3.9-Mb physical map, which covers markers D12S1328 and D12S1329 known to flank the gene. The map comprises a contig of 84 overlapping yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) onto which we placed 82 PCR markers. We localized eight genes and expressed sequence tags on this map, many of which had not been precisely mapped before. In contrast to YACs, which showed a high degree of chimerism and deletions in this region, PACs and BACs were stable. Only 1 in 65 PACs contained a small deletion, and 2 in 18 BACs were chimeric. The high-resolution physical map, which was used in the identification of the SCA2 gene, will be useful for the positional cloning of other disease genes mapped to this region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号