首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The thermophilic, sulfur metabolizing Archaeoglobus fulgidus contains two genes, AF0473 and AF0152, encoding for PIB-type heavy metal transport ATPases. In this study, we describe the cloning, heterologous expression, purification, and functional characterization of one of these ATPases, CopA (NCB accession number AAB90763), encoded by AF0473. CopA is active at high temperatures (75 degrees C; E(a) = 103 kJ/mol) and inactive at 37 degrees C. It is activated by Ag+ (ATPase V(max) = 14.82 micromol/mg/h) and to a lesser extent by Cu+ (ATPase V(max) = 3.66 micromol/mg/h). However, Cu+ interacts with the enzyme with higher apparent affinity (ATPase stimulation, Ag+ K(12) = 29.4 microm; Cu+ K(12) = 2.1 microm). This activation by Ag+ or Cu+ is dependent on the presence of millimolar amounts of cysteine. In the presence of ATP, these metals drive the formation of an acid-stable phosphoenzyme with apparent affinities similar to those observed in the ATPase activity determinations (Ag+, K(12) = 23.0 microm; Cu+, K(12) = 3.9 microm). However, comparable levels of phosphoenzyme are reached in the presence of both cations (Ag+, 1.40 nmol/mg; Cu+, 1.08 nmol/mg). The stimulation of phosphorylation by the cations suggests that CopA drives the outward movement of the metal. CopA presents additional functional characteristics similar to other P-type ATPases. ATP interacts with the enzyme with two apparent affinities (ATPase K(m) = 0.25 mm; phosphorylation K(m) = 4.81 microm), and the presence of vanadate leads to enzyme inactivation (IC(50) = 24 microm). This is the first Ag+/Cu+ -ATPase expressed and purified in a functional form. Thus, it provides a model for structure-functional studies of these transporters. Moreover, its characterization will also contribute to an understanding of thermophilic ion transporters.  相似文献   

2.
Copper homeostasis is maintained in part by membrane-bound P(1B)-type ATPases that are found in all organisms and drive the transport of this essential, yet toxic, metal ion across cellular membranes. CopA from Archaeoglobus fulgidus is a hyperthermophilic member of this ATPase subfamily and is homologous to the human Wilson and Menkes disease ATPases. To gain insight into Cu(+)-ATPase function, the structure of the CopA actuator domain (A-domain) was determined to 1.65 A resolution. The CopA A-domain functions to couple ATP hydrolysis in the ATP binding domain (ATPBD) with structural rearrangements of critical transmembrane segments. Its fold is quite similar to that of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) A-domain, with the exception of an external loop region. On the basis of sequence and structural comparisons, specific residues that probably interact with the CopA ATPBD have been identified. Comparisons to the Wilson and Menkes disease A-domains reveal the presence of an additional loop that may be associated with regulatory functions in eukaryotic Cu(+)-ATPases. Finally, several mutations in the Wilson and Menkes disease ATPases occur in the A-domain, and their likely effects on function can be inferred from the CopA A-domain structure.  相似文献   

3.
Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. Interferon-γ was found to increase expression of the high affinity copper importer, CTR1, and stimulate copper uptake. This was accompanied by copper-stimulated trafficking of the ATP7A copper exporter from the Golgi to vesicles that partially overlapped with phagosomal compartments. Silencing of ATP7A expression attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of macrophages. Significantly, a copper-sensitive mutant of Escherichia coli lacking the CopA copper-transporting ATPase was hypersensitive to killing by RAW264.7 macrophages, and this phenotype was dependent on ATP7A expression. Collectively, these data suggest that copper-transporting ATPases, CopA and ATP7A, in both bacteria and macrophage are unique determinants of bacteria survival and identify an unexpected role for copper at the host-pathogen interface.  相似文献   

4.
P1B‐ATPases are among the most common resistance factors to metal‐induced stress. Belonging to the superfamily of P‐type ATPases, they are capable of exporting transition metal ions at the expense of adenosine triphosphate (ATP) hydrolysis. P1B‐ATPases share a conserved structure of three cytoplasmic domains linked by a transmembrane domain. In addition, they possess a unique class of domains located at the N‐terminus. In bacteria, these domains are primarily associated with metal binding and either occur individually or as serial copies of each other. Within this study, the roles of the two adjacent metal‐binding domains (MBDs) of CopA, the copper export ATPase of Escherichia coli were investigated. From biochemical and physiological data, we deciphered the protein‐internal pathway of copper and demonstrate the distal N‐terminal MBD to possess a function analogous to the metallochaperones of related prokaryotic copper resistance systems, that is its involvement in the copper transfer to the membrane‐integral ion‐binding sites of CopA. In contrast, the proximal domain MBD2 has a regulatory role by suppressing the catalytic activity of CopA in absence of copper. Furthermore, we propose a general functional divergence of tandem MBDs in P1B‐ATPases, which is governed by the length of the inter‐domain linker.  相似文献   

5.
CopA, a thermophilic ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu(+) across the cell membrane. Millimolar concentration of Cys dramatically increases ( congruent with 800%) the activity of CopA and other P(IB)-type ATPases (Escherichia coli ZntA and Arabidopsis thaliana HMA2). The high affinity of CopA for metal ( congruent with 1 microM) together with the low Cu(+)-Cys K(D) (<10(-10)M) suggested a multifaceted interaction of Cys with CopA, perhaps acting as a substitute for the Cu(+) chaperone protein present in vivo. To explain the activation by the amino acid and further understand the mechanism of metal delivery to transport ATPases, Cys effects on the turnover and partial reactions of CopA were studied. 2-20 mM Cys accelerates enzyme turnover with little effect on CopA affinity for Cu(+), suggesting a metal independent activation. Furthermore, Cys activates the p-nitrophenyl phosphatase activity of CopA, even though this activity is metal independent. Cys accelerates enzyme phosphorylation and the forward dephosphorylation rates yielding higher steady state phosphoenzyme levels. The faster dephosphorylation would explain the higher enzyme turnover in the presence of Cys. The amino acid has no significant effect on low affinity ATP K(m) suggesting no changes in the E(1)<-->E(2) equilibrium. Characterization of Cu(+) transport into sealed vesicles indicates that Cys acts on the cytoplasmic side of the enzyme. However, the Cys activation of truncated CopA lacking the N-terminal metal binding domain (N-MBD) indicates that activation by Cys is independent of the regulatory N-MBD. These results suggest that Cys is a non-essential activator of CopA, interacting with the cytoplasmic side of the enzyme while this is in an E1 form. Interestingly, these effects also point out that Cu(+) can reach the cytoplasmic opening of the access path into the transmembrane transport sites either as a free metal or a Cu(+)-Cys complex.  相似文献   

6.
The P-type ATPases translocate cations across membranes using the energy provided by ATP hydrolysis. CopA from Archaeoglobus fulgidus is a hyperthermophilic ATPase responsible for the cellular export of Cu+ and is a member of the heavy metal P1B-type ATPase subfamily, which includes the related Wilson and Menkes diseases proteins. The Cu+-ATPases are distinct from their P-type counter-parts in ion binding sequences, membrane topology, and the presence of cytoplasmic metal binding domains, suggesting that they employ alternate forms of regulation and novel mechanisms of ion transport. To gain insight into Cu+-ATPase function, the structure of the CopA ATP binding domain (ATPBD) was determined to 2.3 A resolution. Similar to other P-type ATPases, the ATPBD includes nucleotide binding (N-domain) and phosphorylation (P-domain) domains. The ATPBD adopts a closed conformation similar to the nucleotide-bound forms of the Ca2+-ATPase. The CopA ATPBD is much smaller and more compact, however, revealing the minimal elements required for ATP binding, hydrolysis, and enzyme phosphorylation. Structural comparisons to the AMP-PMP-bound form of the Escherichia coli K+-transporting Kdp-ATPase and to the Wilson disease protein N-domain indicate that the five conserved N-domain residues found in P1B-type ATPases, but not in the other families, most likely participate in ATP binding. By contrast, the P-domain includes several residues conserved among all P-type ATPases. Finally, the CopA ATPBD structure provides a basis for understanding the likely structural and functional effects of various mutations that lead to Wilson and Menkes diseases.  相似文献   

7.
P-type ATPases play an important role in Cu homeostasis, which provides sufficient Cu for metalloenzyme biosynthesis but prevents oxidative damage of free Cu to the cell. The P(IB) group of P-type ATPases includes ATP-dependent pumps of Cu and other transition metal ions, and it is distinguished from other family members by the presence of N-terminal metal-binding domains (MBD). We have determined structures of two constructs of a Cu pump from Archaeoglobus fulgidus (CopA) by cryoelectron microscopy of tubular crystals, which reveal the overall architecture and domain organization of the molecule. By comparing these structures, we localized its N-terminal MBD within the cytoplasmic domains that use ATP hydrolysis to drive the transport cycle. We have built a pseudoatomic model by fitting existing crystallographic structures into the cryoelectron microscopy maps for CopA, which suggest a Cu-dependent regulatory role for the MBD.  相似文献   

8.
The cop operon is a key element of copper homeostasis in Enterococcus hirae. It encodes two copper ATPases, CopA and CopB, the CopY repressor, and the CopZ metallochaperone. The cop operon is induced by copper, which allows uncompromised growth in up to 5 mM ambient copper. Copper uptake appears to be accomplished by the CopA ATPase, a member of the heavy metal CPx-type ATPases and closely related to the human Menkes and Wilson ATPases. The related CopB ATPase extrudes copper when it reaches toxic levels. Intracellular copper routing is accomplished by the CopZ copper chaperone. Using surface plasmon resonance analysis, it was demonstrated that CopZ interacts with the CopA ATPase where it probably becomes copper loaded. CopZ in turn can donate copper to the copper responsive repressor CopY, thereby releasing it from DNA. In high copper, CopZ is proteolyzed. Cell extracts were found to contain a copper activated proteolytic activity that degrades CopZ in vitro. This post-translational control of CopZ expression presumably serves to avoid the accumulation of detrimental Cu-CopZ levels.  相似文献   

9.
The Cu+‐ATPase CopA from Archaeoglobus fulgidus belongs to the P1B family of the P‐type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P1B‐1‐type ATPases is the presence of soluble metal binding domains at the N‐terminus (N‐MBDs). The N‐MBDs exhibit a conserved ferredoxin‐like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N‐MBDs enable Cu+ regulation of turnover rates apparently through Cu‐sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N‐terminal MBD and a C‐terminal MBD (C‐MBD). The functional role of the unique C‐MBD has not been established. Here, we report the crystal structure of the apo, oxidized C‐MBD to 2.0 Å resolution. In the structure, two C‐MBD monomers form a domain‐swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C‐MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A‐domain), has been investigated. Interestingly, the C‐MBD interacts specifically with both of these domains, independent of the presence of Cu+ or nucleotides. These data reinforce the uniqueness of the C‐MBD and suggest a distinct structural role for the C‐MBD in CopA transport. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
The CopA copper ATPase of Enterococcus hirae belongs to the family of heavy metal pumping CPx-type ATPases and shares 43% sequence similarity with the human Menkes and Wilson copper ATPases. Due to a lack of suitable protein crystals, only partial three-dimensional structures have so far been obtained for this family of ion pumps. We present a structural model of CopA derived by combining topological information obtained by intramolecular cross-linking with molecular modeling. Purified CopA was cross-linked with different bivalent reagents, followed by tryptic digestion and identification of cross-linked peptides by mass spectrometry. The structural proximity of tryptic fragments provided information about the structural arrangement of the hydrophilic protein domains, which was integrated into a three-dimensional model of CopA. Comparative modeling of CopA was guided by the sequence similarity to the calcium ATPase of the sarcoplasmic reticulum, Serca1, for which detailed structures are available. In addition, known partial structures of CPx-ATPase homologous to CopA were used as modeling templates. A docking approach was used to predict the orientation of the heavy metal binding domain of CopA relative to the core structure, which was verified by distance constraints derived from cross-links. The overall structural model of CopA resembles the Serca1 structure, but reveals distinctive features of CPx-type ATPases. A prominent feature is the positioning of the heavy metal binding domain. It features an orientation of the Cu binding ligands which is appropriate for the interaction with Cu-loaded metallochaperones in solution. Moreover, a novel model of the architecture of the intramembranous Cu binding sites could be derived.  相似文献   

11.
Wilson disease is an autosomal recessive disorder of copper metabolism. The gene for this disorder has been cloned and identified to encode a copper-transporting ATPase (ATP7B), a member of a large family of cation transporters, the P-type ATPases. In addition to the core elements common to all P-type ATPases, the Wilson copper-transporting ATPase has a large cytoplasmic N-terminus comprised six heavy metal associated (HMA) domains, each of which contains the copper-binding sequence motif GMT/HCXXC. Extensive studies addressing the functional, regulatory, and structural aspects of heavy metal transport by heavy metal transporters in general, have offered great insights into copper transport by Wilson copper-transporting ATPase. The findings from these studies have been used together with homology modeling of the Wilson disease copper-transporting ATPases based on the X-ray structure of the sarcoplasmic reticulum (SR) calcium-ATPase, to present a hypothetical model of the mechanism of copper transport by copper-transporting ATPases.  相似文献   

12.
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function.  相似文献   

13.
The solution structure of the N-terminal region (151 amino acids) of a copper ATPase, CopA, from Bacillus subtilis, is reported here. It consists of two domains, CopAa and CopAb, linked by two amino acids. It is found that the two domains, which had already been separately characterized, interact one to the other through a hydrogen bond network and a few hydrophobic interactions, forming a single rigid body. The two metal binding sites are far from one another, and the short link between the domains prevents them from interacting. This and the surface electrostatic potential suggest that each domain receives copper from the copper chaperone, CopZ, independently and transfers it to the membrane binding site of CopA. The affinity constants of silver(I) and copper(I) are similar for the two sites as monitored by NMR. Because the present construct "domain-short link-domain" is shared also by the last two domains of the eukaryotic copper ATPases and several residues at the interface between the two domains are conserved, the conclusions of the present study have general validity for the understanding of the function of copper ATPases.  相似文献   

14.
CopA, a thermophilic ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu+ across the cell membrane. Millimolar concentration of Cys dramatically increases (≅ 800%) the activity of CopA and other PIB-type ATPases (Escherichia coli ZntA and Arabidopsis thaliana HMA2). The high affinity of CopA for metal (≅ 1 μM) together with the low Cu+-Cys KD (< 10− 10M) suggested a multifaceted interaction of Cys with CopA, perhaps acting as a substitute for the Cu+ chaperone protein present in vivo. To explain the activation by the amino acid and further understand the mechanism of metal delivery to transport ATPases, Cys effects on the turnover and partial reactions of CopA were studied. 2-20 mM Cys accelerates enzyme turnover with little effect on CopA affinity for Cu+, suggesting a metal independent activation. Furthermore, Cys activates the p-nitrophenyl phosphatase activity of CopA, even though this activity is metal independent. Cys accelerates enzyme phosphorylation and the forward dephosphorylation rates yielding higher steady state phosphoenzyme levels. The faster dephosphorylation would explain the higher enzyme turnover in the presence of Cys. The amino acid has no significant effect on low affinity ATP Km suggesting no changes in the E1 ↔ E2 equilibrium. Characterization of Cu+ transport into sealed vesicles indicates that Cys acts on the cytoplasmic side of the enzyme. However, the Cys activation of truncated CopA lacking the N-terminal metal binding domain (N-MBD) indicates that activation by Cys is independent of the regulatory N-MBD. These results suggest that Cys is a non-essential activator of CopA, interacting with the cytoplasmic side of the enzyme while this is in an E1 form. Interestingly, these effects also point out that Cu+ can reach the cytoplasmic opening of the access path into the transmembrane transport sites either as a free metal or a Cu+-Cys complex.  相似文献   

15.
In bacteria, most Cu(+) -ATPases confer tolerance to Cu by driving cytoplasmic metal efflux. However, many bacterial genomes contain several genes coding for these enzymes suggesting alternative roles. Pseudomonas aeruginosa has two structurally similar Cu(+) -ATPases, CopA1 and CopA2. Both proteins are essential for virulence. Expressed in response to high Cu, CopA1 maintains the cellular Cu quota and provides tolerance to this metal. CopA2 belongs to a subgroup of ATPases that are expressed in association with cytochrome oxidase subunits. Mutation of copA2 has no effect on Cu toxicity nor intracellular Cu levels; but it leads to higher H(2) O(2) sensitivity and reduced cytochrome oxidase activity. Mutation of both genes does not exacerbate the phenotypes produced by single-gene mutations. CopA1 does not complement the copA2 mutant strain and vice versa, even when promoter regions are exchanged. CopA1 but not CopA2 complements an Escherichia coli strain lacking the endogenous CopA. Nevertheless, transport assays show that both enzymes catalyse cytoplasmic Cu(+) efflux into the periplasm, albeit CopA2 at a significantly lower rate. We hypothesize that their distinct cellular functions could be based on the intrinsic differences in transport kinetic or the likely requirement of periplasmic partner Cu-chaperone proteins specific for each Cu(+) -ATPase.  相似文献   

16.
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.  相似文献   

17.
The cop operons of Helicobacter pylori and Helicobacter felis were cloned by gene library screening. Both operons contain open reading frames for a P-type ion pump (CopA) with homology to Cd2+ and Cu2+ ATPases and a putative ion binding protein (CopP), the latter representing a CopZ homolog of the copYZAB operon of Enterococcus hirae. The predicted CopA ATPases contained an N-terminal GMXCXXC ion binding motif and a membrane-associated CPC sequence. A synthetic N-terminal peptide of the H. pylori CopA ATPase bound to Cu2+ specifically, and gene disruption mutagenesis of CopA resulted in an enhanced growth sensitivity of H. pylori to Cu2+ but not to other divalent cations. As determined experimentally, H. pylori CopA contains four pairs of transmembrane segments (H1 to H8), with the ATP binding and phosphorylation domains lying between H6 and H7, as found for another putative transition metal pump of H. pylori (K. Melchers, T. Weitzenegger, A. Buhmann, W. Steinhilber, G. Sachs, and K. P. Schäfer, J. Biol. Chem. 271:446–457, 1996). The corresponding transmembrane segments of the H. felis CopA pump were identified by hydrophobicity analysis and via sequence similarity. To define functional domains, similarly oriented regions of the two enzymes were examined for sequence identity. Regions with high degrees of identity included the N-terminal Cu2+ binding domain, the regions of ATP binding and phosphorylation in the energy transduction domain, and a transport domain consisting of the last six transmembrane segments with conserved cysteines in H4, H6, and H7. The data suggest that H. pylori and H. felis employ conserved mechanisms of ATPase-dependent copper resistance.  相似文献   

18.
P(IB)-type ATPases have an essential role maintaining copper homeostasis. Metal transport by these membrane proteins requires the presence of a transmembrane metal occlusion/binding site. Previous studies showed that Cys residues in the H6 transmembrane segment are required for metal transport. In this study, the participation in metal binding of conserved residues located in transmembrane segments H7 and H8 was tested using CopA, a model Cu(+)-ATPase from Archaeoglobus fulgidus. Four invariant amino acids in the central portion of H7 (Tyr(682) and Asn(683)) and H8 (Met(711) and Ser(715)) were identified as required for Cu(+) binding. Replacement of these residues abolished enzyme activity. These proteins did not undergo Cu(+)-dependent phosphorylation by ATP but were phosphorylated by P(i) in the absence of Cu(+). Moreover, the presence of Cu(+) could not prevent the enzyme phosphorylation by P(i). Other conserved residues in the H7-H8 region were not required for metal binding. Mutation of two invariant Pro residues had little effect on enzyme function. Replacement of residues located close to the cytoplasmic end of H7-H8 led to inactive enzymes. However, these were able to interact with Cu(+) and undergo phosphorylation. This suggests that the integrity of this region is necessary for conformational transitions but not for ligand binding. These data support the presence of a unique transmembrane Cu(+) binding/translocation site constituted by Tyr-Asn in H7, Met and Ser in H8, and two Cys in H6 of Cu(+)-ATPases. The likely Cu(+) coordination during transport appears distinct from that observed in Cu(+) chaperone proteins or catalytic/redox metal binding sites.  相似文献   

19.
ATP7B, the Wilson disease-associated Cu(I)-transporter, and ZntA from Escherichia coli are soft metal P1-type ATPases with mutually exclusive metal ion substrates. P1-type ATPases have a distinctive amino-terminal domain containing the conserved metal-binding motif GXXCXXC. ZntA has one copy of this motif while ATP7B has six copies. The effect of interchanging the amino-terminal domains of ATP7B and ZntA was investigated. Chimeric proteins were constructed in which either the entire amino-terminal domain of ATP7B or only its sixth metal-binding motif replaced the amino-terminal domain of ZntA. Both chimeras conferred resistance to lead, zinc, and cadmium salts but not to copper salts. The purified chimeras displayed activity with lead, cadmium, zinc, and mercury, which are substrates of ZntA. There was no activity with copper or silver, which are substrates of ATP7B. The chimeras were 2-3-fold less active than ZntA. Thus, the amino-terminal domain of P1-type ATPases cannot alter the metal specificity determined by the transmembrane segment. Also, these results suggest that this domain interacts with the rest of the transporter in a metal ion-specific manner; the amino-terminal domain of ATP7B cannot replace that of ZntA in restoring full catalytic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号