首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fine structural specificities of six monoclonal antibodies (MAbs) to ganglioside GD2, GalNAc beta 1----4(NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4Glc-Cer, were studied. The binding specificities of these MAbs were found to differ from each other by virtue of their binding to structurally related authentic standard glycolipids as revealed by three different assay systems, including enzyme immunostaining on thin-layer chromatography, enzyme-linked immunosorbent assay, and immune adherence inhibition assay. The MAbs examined could be divided into three binding types. MAbs A1-201, A1-410, and A1-425 bound specifically to ganglioside GD2 and none of the other gangliosides tested. Two other MAbs (A1-245 and A1-267) reacted not only with GD2, but also with several other gangliosides having the sequence NeuAc alpha 2----8NeuAc alpha 2----3Gal (GD3, GD1b, GT1a, GT1b, and GQ1b). The reactivities with these gangliosides varied to some degree. In addition, these MAbs were found to react with both GD3(NeuAc-NeuAc) and GD3(NeuGc-NeuAc), but not with GD3(NeuAc-NeuGc) or GD3(NeuGc-NeuGc). The last MAb (A1-287) also reacted with several other gangliosides but with lower avidity than A1-245 and A1-267. These findings suggest that each MAb to ganglioside GD2 may have an individual binding specificity and avidity. These MAbs represent potentially useful reagents for analyzing the function of GD2 on cell surface membranes, and provide a system for precisely studying the interactions between an anti-ganglioside antibody and the binding epitope of the antigenic determinant.  相似文献   

2.
Previous studies have shown that MAb's against the gangliosides GD3 and GD2 may augment T cell responses to a variety of stimuli. We present evidence that antiganglioside MAb's, like PHA, increase intracellular cGMP and protein kinase C yet have no effect on intracellular Ca2+. Stimulation of T cells with MAb's to GD3 was associated with increased cGMP levels, particularly in the CD8+ T cell subset which showed the highest degree of potentiation by the MAb's. Augmentation of T cell responses by the MAb's to GD3 and GD2 was also mimicked by activation of PKC with phorbol esters but both agents together produced marked synergistic effects on cell division, suggesting they had different but complementary modes of action. Furthermore, use of neomycin to inhibit PKC activation only partially reversed the augmentation of proliferative responses by the antiganglioside MAb's. It did however inhibit the MAb-induced increase in IL2 production and IL2 receptor (Tac) expression. These studies suggest therefore that the potentiation of IL2 production by the MAb's against GD2 and GD3 was due to enhanced activation of PKC whereas their augmentation of proliferative responses appeared to be due to effects on late events in T cell activation and was associated with both increased cGMP levels and activation of PKC.  相似文献   

3.
R24, a mouse IgG3 mAb against GD3 ganglioside, was shown to bind to itself in a homophilic manner. This was demonstrated by augmented binding of 125I-labeled R24 to the cell surface of GD3+ cells by unlabeled R24 and by direct binding of biotinylated R24 to R24 adsorbed on solid phase. Although homophilic binding was evident when R24 was bound to solid phase, R24-R24 aggregates could not be detected in solution under otherwise identical conditions. R24 bound to four other mAb (two IgG3, one IgG2a, one IgM) directed against GD3 but did not bind to a panel of 21 other mAb including other IgG3 mAb and mAb directed against non-GD3 ganglioside. Evidence implicating the GD3-binding site of R24 in homophilic binding included the following observations: 1) F(ab')2 fragments of R24 could bind to R24, 2) an antiidiotypic mAb against the GD3-binding site of R24 inhibited R24 homophilic binding, 3) an IgM anti-GD3 mAb also demonstrated homophilic binding to R24, and 4) homophilic binding was a function of immunoreactivity and avidity for GD3. R24 variants with 40-fold lower avidity for GD3 demonstrated a similar decrease in homophilic binding. Inasmuch as R24 bound to R24 F(ab')2 fragments and specifically to anti-GD3 mAb, it appeared that the target for homophilic binding was an epitope within the V region of anti-GD3 mAb. It is likely that homophilic interactions result in increased affinity of R24 for GD3 through increased effective valency of antibody-Ag complexes.  相似文献   

4.
NSCs (neural stem cells) are undifferentiated neural cells endowed with a high potential for proliferation and a capacity for self-renewal with retention of multipotency to differentiate into neurons and glial cells. It has been recently reported that GD3, a b-series ganglioside, is a marker molecule for identifying and isolating mouse NSCs. However, the expression of gangliosides in human NSCs is largely unknown. In the present study, we analysed the expression of gangliosides, GD2 and GD3, in human NSCs that were isolated from human brains at gestational week 17 in the form of neurospheres, which are floating clonal aggregates formed by NSCs in vitro. Employing immunocytochemistry, we found that human NSCs were strongly reactive to anti-GD2 antibody and relatively weakly reactive to anti-GD3 antibody. Treatment of these cells with an organic solvent such as 100% methanol, which selectively removes glycolipids from plasma membrane, abolished the immunoreactivity with those antibodies, indicating that the reactivity was due to GD2 and GD3, but not to GD2-/GD3-like glycoproteins or proteoglycans. The immunoreactivity of human NSCs to antibody against SSEA-1 (stage-specific embryonic antigen-1), a well-known carbohydrate antigen of NSCs, was not decreased by the treatment with 100% methanol, indicating that SSEA-1 is mainly carried by glycoproteins and/or proteoglycans in human NSCs. Our study suggests that GD2 and GD3 can be marker gangliosides for identifying human NSCs.  相似文献   

5.
Cell-surface gangliosides are presumed to play a role in cell growth and differentiation. With the use of monoclonal antibodies directed against GD3, a disialoganglioside expressed predominantly by cells of neuroectodermal origin, we have found that GD3 is expressed by a subpopulation of cells of the immune system including: 1) fetal thymocytes in subcortical regions and near vessels, 2) lymph node lymphocytes in interfollicular areas and near vessels, and 3) a small subset of T cells in the peripheral blood. Mouse monoclonal antibodies (two IgGs, one IgM, and F(ab')2 fragments) reacting with GD3 were found to stimulate proliferation of T cells derived from peripheral blood. Proliferation of T cells was observed even in cultures depleted of macrophages, suggesting that activation by anti-GD3 was not dependent on the presence of accessory cells. T cell proliferation was maximum between days 5 and 7 of stimulation and was preceded by expression of interleukin 2 receptors. No stimulation was observed with control antibodies of the identical isotype or with monoclonal antibodies recognizing the gangliosides GD2 or GM2. During stimulation by anti-GD3 monoclonal antibodies, there was an expansion of the GD3+ pool of T cells, but depletion of GD3+ T cells prior to stimulation abrogated the response. Proliferation induced by binding to GD3 could be augmented by exogenous interleukin 2 and phytohemagglutinin. Anti-CD3 (T3) monoclonal antibodies had little or no effect. These results demonstrate that binding to GD3 on the surface of T cells can elicit signals for T cell proliferation.  相似文献   

6.
Four kinds of anti-GD3 monoclonal antibodies, DSG-1, -2, -3, and -4, of the IgM class were obtained by the immunization of BALB/c mice with enzootic bovine leukosis tumor tissue-derived ganglioside GD3 inserted into liposomes with Salmonella minnesota R595 lipopolysaccharides. The specificities of the monoclonal antibodies obtained were defined by complement-dependent liposome immune lysis assay and by enzyme immunostaining on thin-layer chromatography. The reactivities of the monoclonal antibodies obtained to four ganglioside GD3 variants [GD3(NeuAc-NeuAc), GD3(NeuAc-NeuGc), GD3(NeuGc-NeuAc), and GD3(NeuGc-NeuGc)] were tested. All of the monoclonal antibodies were found to react with GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc) but not with GD3(NeuGc-NeuAc) or GD3(NeuGc-NeuGc). Furthermore, various purified glycosphingolipids were used to determine the specificity of these monoclonal antibodies. All 4 antibodies reacted only with ganglioside GD3 [GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc)], but not with several gangliosides linking the GalNAc, Gal beta 1-3GalNAc, NeuAc alpha 2-3Gal beta 1-3GalNAc, or NeuAc alpha 2-8NeuAc alpha 2-3Gal beta 1-3GalNAc residue to the Gal moiety of ganglioside GD3 (GD2, GD1b, GT1b, or GQ1b, respectively), ganglioside GT1a having the same terminal NeuAc alpha 2-8NeuAc alpha 2-3Gal residue as ganglioside GD3, other gangliosides, and neutral glycosphingolipids. These findings suggest that the 4 monoclonal antibodies obtained may be specific for the epitope of NeuAc-alpha 2-8Sia alpha 2-3Gal beta 1-4Glc residue of ganglioside GD3.  相似文献   

7.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

8.
It had previously been shown by using polyclonal antibodies that chlorambucil (CBL) and antibody did not have to be covalently bound to selectively inhibit tumor cell growth. This paper has reexamined this phenomena by using monoclonal antibodies (MoAb) and has sought to determine how antibody may serve to focus and to increase the cytotoxic effect of non-covalently bound CBL. In vitro, it was shown that MoAb per se had no effect, the MoAb had to be reactive with and to bind to tumor target cells for CBL to have an enhanced cytotoxicity. Furthermore, not all MoAb were effective; IgM and IgG2a subclasses enhanced CBL cytotoxicity, but IgG3 did not. At the cell surface, studies clearly showed that endocytosis of CBL and MoAb did not occur, as metabolic inhibitors, and lowered temperatures, which both inhibit endocytosis, had no effect on their cytotoxicity. In addition, NH4Cl an inhibitor of lysosomal enzymes did not reduce the cytotoxicity of CBL and MoAb. Thus CBL that is non-covalently bound to MoAb enters the cell independently of the MoAb. We conclude therefore that cell-bound MoAb is able to concentrate CBL on the surface of tumor cells by an unknown mechanism thereby enabling CBL to selectively alkylate their cell membranes and subsequently inhibit additional tumor cell growth.  相似文献   

9.
In a previous work we have reported that gangliosides inhibit interleukin 1 (IL-1) release by human monocytes stimulated with lipopolysaccharides (LPS). In the present study we extend this work to IL-1 production and we correlate these observations with the capacity of gangliosides to inhibit the binding of radiolabeled LPS to its specific receptor on human monocytes. Preincubation of 3H-LPS with crude bovine brain gangliosides, as well as purified human brain mono, di, and trisialogangliosides (GM1, GD1a, and GT1b, respectively), led to an inhibition of the specific binding of LPS to the cell surface. Neither ceramide nor N-acetyl neuraminic acid, two constituents of gangliosides, was able by itself to inhibit the specific binding. A strict parallelism was observed with respect to inhibition on LPS-induced IL-1 production and release. Asialoganglioside (asialo-GM1) was inactive in both assays, suggesting that the N-acetyl neuraminic acid plays a role within the ganglioside molecule, with respect to inhibitory activity. We conclude that LPS-induced production and release by human monocytes is not due to a signal triggered by nonspecific absorption and/or intercalation of LPS into cell membrane which occur through hydrophobic interaction mediated by the lipid A region. Addition of exogenous sialogangliosides which blocked LPS-induced IL-1 production and release, did not modify significantly the nonspecific binding of 3H-LPS, whereas it did inhibit the specific binding which is mediated by the polysaccharide moiety of the LPS molecule. These results establish a relationship between the specific endotoxin receptor on monocytes and a LPS-induced cellular function.  相似文献   

10.
Female BALB/c mice were immunized with human melanoma (Mewo) cells containing ganglioside GD3 as a surface antigen. Immune splenocytes were fused with syngeneic P3-X63.Ag 8 myeloma cells. Antibodies produced by hybrid clones were analyzed by solid phase immunoassay. B, C, D and Q clones producing antibodies against Raja clavata brain gangliosides were obtained. Monoclonal B and C antibodies bound monosialogangliosides. Monoclonal D antibody bound a number of gangliosides but reacted predominantly with GD1a. Monoclonal Q antibody reacted selectively with GQ1c. It is assumed that ganglioside GQ1c is expressed on the melanoma cell surface and may be found only in the early stage of ontogenesis of high vertebrates.  相似文献   

11.
Gangliosides are sialic acid-containing glycosphingolipids and exhibit various physiologic functions. Gangliosides GD1a and GM3 strongly induced interleukin-10 (IL-10) protein secretion and mRNA expression in T cells from normal human subjects while the other gangliosides were ineffective. IL-10 induction by both gangliosides was completely blocked by protein tyrosine kinase (PTK) inhibitors, herbimycin A, genistein, and tyrphostin AG 1288, but not by other signal transduction inhibitors. These results suggest that GD1a and GM3 may induce IL-10 production in T cells by regulating the PTK-dependent signaling pathway. These gangliosides may thus act as important immunoregulators via IL-10.  相似文献   

12.
With the use of cultured human thymic epithelial (TE) cells, we have previously shown that thymocytes bind to TE cells in suspension in a rosette-forming assay. To identify cell surface molecules involved in human TE-thymocyte rosette formation, we assayed a large panel of monoclonal antibodies for their ability to inhibit rosette formation. We found anti-CD-2 (LFA-2, T11), and anti-LFA-3 antibodies all inhibited binding of TE cells to thymocytes. By using indirect immunofluorescence assays, we determined that cultured TE cells were 90% LFA-3 positive and CD-2 negative, whereas thymocytes were 10% LFA-3 positive and 98% CD-2 positive. Pretreatment of TE cells with anti-LFA-3 but not anti-LFA-2 inhibited TE-thymocyte binding. In contrast, pretreatment of thymocytes with anti-CD-2 but not anti-LFA-3 antibodies inhibited TE-thymocyte binding. Thus TE cell-thymocyte binding is blocked by antibodies to the CD-2 (T11) antigen on thymocytes and by an antibody to the LFA-3 antigen on TE cells. Because the CD-2 antigen has been implicated in T cell activation, these data suggest that a natural ligand for T cell activation via the CD-2 molecule is present on human thymic epithelial cells.  相似文献   

13.
Ganglioside GD3, which is one of the major gangliosides expressed on the cell surface human tumors of neuroectodermal origin, has been studied as a target molecule for passive immunotherapy. We established ten kinds of anti-GD3 monoclonal antibodies (mAb) of the mouse IgG3 subclass by immunization with purified GD3 and melanoma cells. One of the established mAb, KM641, showed major reactivity with GD3 and minor reactivity with GQ1b out of 11 common gangliosides in an enzymelinked immunosorbent assay. Immunostaining of gangliosides, separated on thin-layer chromatography plates, using KM641 revealed that most of the melanoma cell lines contained immunoreactive GD3 and GD3-lactone at a high level, but only the adrenal gland and the urinary bladder out of 21 human normal tissues had immunoreactive GD3. In immunofluorescence, KM641 bound to a variety of living tumor cell lines especially melanoma cells, including some cell lines to which another anti-GD3 mAb R24, established previously, failed to bind. High-affinity binding of KM641 to a tumor cell line was quantified by Scatchard analysis (K d = 1.9×10–8 M). KM641 exerted tumor-killing activity in the presence of effector cells or complement against melanoma cells expressing GD3 at a high level. Not only natural killer cells but also polymorphonuclear cells were effective as the effector cells in antibody-dependent cellular cytotoxicity. Intravenous injection of KM641 markedly suppressed the tumor growth of a slightly positive cell line, C24.22 (7.2×105 binding sites/cell), as well as a very GD3-positive cell line, G361 (1.9×107 binding sites/cell), inoculated intradermally in nude mice. KM641, characterized by a high binding affinity for GD3, has the potential to be a useful agent for passive immunotherapy of human cancer.  相似文献   

14.
Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Le(x) biosyntheses [Basu, S (1991) Glycobiology, 1, 469-475; and ibid, 427-435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of (14)C-L-Serine. At lower concentrations (0-20 microM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both (14)C-sphingolipid and (14)C-ceramide was higher. However, at higher concentrations (20-100 microM), wherein apoptosis occurred in high frequency, the (14)C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death.  相似文献   

15.
Monoclonal antibodies (MAbs) were developed against recombinant ovine interleukin-5 (IL-5) produced in the baculovirus expression vector system. One MAb, D11 (isotype IgG1), neutralised the activity of both recombinant and native sources of IL-5 in a biological assay (Baf cell assay) but was only weakly reactive in immunocytochemistry. Conversely, a second MAb, A8 (isotype IgA), successfully detected IL-5 in immunocytochemistry but did not display neutralising activity. The development of these MAbs will enable the assay of ovine IL-5 in vitro and permit studies into the role of hypersensitivity reactions in sheep by neutralisation of IL-5 in vivo.  相似文献   

16.
Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Lex biosyntheses [Basu, S (1991) Glycobiology, 1, 469–475; and ibid, 427–435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of 14C-L-Serine. At lower concentrations (0–20 μM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both 14C-sphingolipid and 14C-ceramide was higher. However, at higher concentrations (20–100 μM), wherein apoptosis occurred in high frequency, the 14C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Mechanisms of ligand binding by monoclonal anti-fluorescyl antibodies   总被引:2,自引:0,他引:2  
Binding of fluorescyl ligand by five IgG anti-fluorescyl hybridoma proteins (4-4-20, 6-10-6, 20-4-4, 20-19-=1, 20-20-3) was examined. Relative reduction in fluorescence of bound fluorescein, deuterium oxide (D2O)-induced enhancement of fluorescence, and the effects of pH on binding kinetics were measured for each clone. Individual hybridoma proteins (all of which bind fluorescein with relatively high affinity) exhibited significant differences in the relative contribution of various forces (hydrophobicity, hydrogen bonding, ionic interactions) to binding and hence, affinity. The extent of such variations in binding mechanisms among monoclonal antibodies binding the same hapten is indicative of the extreme functional diversity of active sites. In addition, ligand binding by clone 20-20-3 was examined in greater detail. ABsorption spectra of ligand bound by purified intact antibody, Fab fragments, and reassociated heavy and light chains indicated that protonation of the fluorescyl ligand by a residue within the active site contributed significantly to the binding free energy. Comparative dissociation rates of fluorescein and a structural analog, rhodamine 110, were used to quantitatively substantiate the contribution of this interaction. Association and dissociation rate studies with fluorescein and antibody indicated that: 1) the active site appeared to undergo a conformational change upon ligand binding, and 2) neither intact disulfides nor intersite cooperativity affected the dissociation rate of bound ligand. Observed mechanisms of ligand binding are discussed in terms of proposed mechanisms of antibody affinity maturation and diversity.  相似文献   

18.
The consensus octapeptide repeat motif of the barley seed storage protein C hordein, Pro-Gln-Gln-Pro-Phe-Pro-Gln-Gln, forms the epitope of two anti-prolamin monoclonal antibodies (Mabs), IFRN 0061 and 0614. The Mabs were found to exhibit unusual temperature-dependent binding characteristics, recognising C hordein and a peptide corresponding to the consensus repeat at 5°C but not at 37°C, as determined by enzyme-linked immunosorbent assay (ELISA). The Kd of IFRN 0614 for the consensus peptide was found to be 1.2×1012 mol−1 at 12°C, but no constant could be calculated at 37°C due to a lack of binding. Similar ELISA binding characteristics were observed with an anti-C hordein polyclonal antiserum and a Mab raised to the consensus peptide. Circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopy showed that the protein and the consensus peptide exist in a temperature-dependent equilibrium of poly-L-proline II type structures and β-turn conformations. Whilst thermodynamic and kinetic effects may reduce antibody binding at higher temperatures, they cannot account for the complete loss of Mab recognition at higher temperatures. It seems likely that the Mabs preferentially recognise the Pro-Gln-Gln-Pro-Phe-Pro-Gln-Gln motif when presented in a conformation which may correspond to the poly-L-proline II type conformation which dominates the CD and FTIR spectra at 4-12°C.  相似文献   

19.
Mapping the binding of monoclonal antibodies to histone H5   总被引:2,自引:0,他引:2  
E Mendelson  B J Smith  M Bustin 《Biochemistry》1984,23(15):3466-3471
The binding sites of nine monoclonal antibodies along the polypeptide chain of histone H5 were mapped. Immunoblotting experiments with peptides generated from H5 by trypsin digestion, N-bromosuccinimide cleavage, and cyanogen bromide cleavage revealed that all of the monoclonal antibodies reacted with the globular region of H5 which is encompassed by amino acid residues 22-98. Within this globular segment, the epitopes could be subdivided into three regions. Monoclonals 1G11, 2E5, and 2H5 bind to residues 28-31. The close proximity of the epitopes was verified by a competitive enzyme-linked immunosorbent assay and by their binding pattern to a tryptic digest of H5. Monoclonals 4C6, 6E12, and 2E12 bind to a region encompassed by amino acids 28-53 while monoclonals 4H7, 1C3, and 3H9 bind to a region encompassed by residues 53-98. Precise localization of the epitopes in the primary sequence of H5 will allow detailed studies on the mode of binding of H5 to core particles in chromatin.  相似文献   

20.
Interleukin-2 (IL-2) is a 15 kDa glycoprotein with proven activity as an immune stimulant in the treatment of malignant disorders, congenital and acquired immune deficiencies, infectious disorders, and as an adjuvant to vaccines. Both natural and recombinant type IL-2 preparations have been applied in clinical treatment trials and have turned out to be immunogenic, although to a varying extent. Enzyme immunoassays and western blotting are standard procedures for the detection of IL-2-binding antibodies, whereas the neutralizing capacity of these antibodies is frequently demonstrated by inhibition of IL-2-dependent cell growth in vitro. The rate of treatment-induced IL-2 antibodies has varied from 0% to 100% in reported trials and frequently exceeded 50% in patients exposed to recombinant IL-2, whereas natural type IL-2 appeared to be little immunogenic. Duration of treatment, cumulative IL-2 dose, and route of IL-2 administration are likely to determine both the rate of seroconversion as well as composition and properties of the anti-IL-2 antibodies. Interleukin-2 antibodies are polyclonal in nature and predominantly composed of IgM and IgG types. Frequently they react with both recombinant and natural IL-2 types. As a rule, neutralizing IL-2 antibodies are detected in serum samples with high IL-2-binding titers and are recognized later than their non-neutralizing predecessors. Neutralization in vitro, however, does not predict neutralization in vivo, and there are very rare patients with documented, antibody-mediated loss of response to IL-2 treatment. More frequently, IL-2 antibodies will limit the expression of IL-2-dependent proteins in vivo, but the opposite has also been observed. Although the precise mechanism of antibody induction by IL-2 is unknown, immunogenicity of some drug formulations rather than polyclonal B-cell activation appears to play a critical role. Approaches aiming at limiting the immunogenicity of IL-2 preparations are discussed, and strategies how to recognize and circumvent antibody-mediated IL-2 resistance are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号