首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterothallic mushrooms accomplish sex by exchanging nuclei without cytoplasm. Hyphal fusions occur between haploid mycelia resulting from germinated spores and subsequent reciprocal nuclear exchange without cytoplasmic mixing. The resulting dikaryon is therefore a cytoplasmic mosaic with uniformly distributed nuclei (two in each cell). Cytoplasmic inheritance is doubly uniparental: both mated monokaryons can potentially transmit their cytoplasm to the sexual spores, but normally only a single type per spore is found.Intracellular competition between mitochondria is thus limited, but at the dikaryon level, the two types of mitochondria compete over transmission. This creates the conditions for genomic conflict: within the dikaryon, a selfish mitochondrial mutant with increased relative transmission can be favoured, but selection between dikaryons will act against such a mitochondrial mutant. Moreover, because nuclear fitness is directly dependent on dikaryon fitness, a reduction in dikaryon fitness directly conflicts with nuclear interests. We propose that genomic conflict explains the frequent occurrence of non-reciprocal nuclear exchange in mushrooms. With non-reciprocal exchange, one monokaryon donates a nucleus and the other accepts it, but not vice versa as in the typical life cycle. We propose a model where non-reciprocal nuclear exchange is primarily driven by mitochondria inducing male sterility and the evolution of nuclear suppressors.  相似文献   

2.
When protoplasts carrying metalaxyl-resistant (Mr) nuclei from the A1 isolate of Phytophthora parasitica were fused with protoplasts carrying chloroneb-resistant (Cnr) nuclei from the A2 isolate of the same species, fusion products carrying Mr nuclei were either the A2 or A1A2 type, while those carrying Cnr nuclei were the A1, A2, or A1A2 type. Fusion products carrying Mr and Cnr nuclei also behaved as the A1, A2, or A1A2 type. The result refutes the hypothesis that mating types in Phytophthora are controlled by nuclear genes. When nuclei from the A1 isolate of P. parasitica were fused with protoplasts from the A2 isolate of the same species and vice versa, all of the nuclear hybrids expressed the mating type characteristics of the protoplast parent. The same was true when the nuclei from the A1 isolate of P. parasitica were fused with the protoplasts from the A0 isolate of Phytophthora capsici and vice versa. These results confirm the observation that mating type genes are not located in the nuclei and suggest the presence of mating type genes in the cytoplasms of the recipient protoplasts. When mitochondria from the A1 isolate of P. parasitica were fused with protoplasts from the A2 isolate of the same species, the mating type of three out of five regenerated protoplasts was changed to the A1 type. The result demonstrated the decisive effect of mitochondrial donor sexuality on mating type characteristics of mitochondrial hybrids and suggested the presence of mating type genes in mitochondria. All of the mitochondrial hybrids resulting from the transfer of mitochondria from the A0 isolate of P. capsici into protoplasts from the A1 isolate of P. parasitica were all of the A0 type. The result supports the hypothesis of the presence of mating type genes in mitochondria in Phytophthora.  相似文献   

3.
4.
Basidiomycete fungi perform fertilizations by incorporation of nuclei into a monokaryotic mycelium to establish a dikaryon. The dikaryon cannot incorporate another type of nucleus, but can still act as a nucleus donor in a dikaryon–monokaryon (di–mon) mating, known as the Buller phenomenon. Previously, it has been observed that: (1) in a particular di–mon mating, one of the nuclear types of the dikaryon generally performs better as a donor than the other, and (2) when nuclei from a dikaryon are separated to form monokaryons again (dedikaryotisation), recovery of monokaryons of the two nuclear types is usually unequal. In this study, we investigated if these two observations of asymmetry are functionally related. We tested this hypothesis by performing both di–mon matings and dedikaryotisation of dikaryons derived from five different monokaryons. When a single mechanism controls both processes, the nucleus better at fertilizing a monokaryon in a Buller pairing should also be recovered upon dedikaryotisation with a higher frequency. The results showed a hierarchical structure for recovery among nuclei in dedikaryotisation, but this hierarchy did not correspond to the fertilization success during di–mon mating. These findings thus show that the mechanism causing asymmetric regeneration of nuclei, is most likely not the same as the mechanism responsible for increased chance of fertilization in di–mon matings. We discuss the complexity of the interactions that occur during di–mon matings with regards to the mating type loci.  相似文献   

5.
Transmission of dsRNA viruses between homo- and heterokaryotic mycelia paired on agar plates and into conidia has been studied in Heterobasidion annosum. Horizontal transmission of dsRNA occurred between both homo- and heterokaryotic isolates, as well as between isolates belonging to different intersterility groups. The proportions of vertical transmission into conidia were 3% and 55%, respectively, for the two isolates included in the study. RT-PCR of dsRNA and PCR-RFLP of mitochondrial markers were used to confirm transmission of dsRNA between the cytoplasms of different mycelia. The identity of nuclei and nuclear migration during experiments were verified using PCR-RFLP of several nuclear markers.  相似文献   

6.
How viral infections affect host cell mitochondrial functions is largely unknown. In this study, uptake of radiolabeled precursors was used to assess how a herpes simplex virus type 1 (HSV 1) infection influences synthesis of macromolecules comprising Vero cell mitochondria. Total macromolecular synthesis in infected cells was determined for comparative purposes. Mitochondrial and total cellular DNA syntheses were approximately halved at 1-2.5 h postinfection (PI). Mitochondrial DNA synthesis in infected cells then rose to 3.5-fold that in control cells at 3-4.5 h PI. Total DNA synthesis in infected cells also rose, but more slowly, reaching threefold that for control cells at 5-6.5 h PI. Mitochondrial and total RNA synthesis in infected cells were both decreased by approximately 40% at 1-3 h PI. Over the next 4 h, total RNA synthesis in infected cells slowly continued to decrease, while that in mitochondria recovered to control levels. Synthesis of mitochondrial proteins in infected cells decreased progressively, dropping to about 60% of control levels by 5-6.5 h PI. With the metabolic inhibitors ethidium bromide and cycloheximide, it was determined that nuclear DNA and mitochondrial DNA and mitochondrial DNA directed synthesis of mitochondrial proteins were each partially inhibited in infected cells. Total cellular protein synthesis was decreased by 30% at 1-2.5 h PI and then recovered to control levels by 5-6.5 h PI. Finally, phospholipid synthesis in mitochondria from infected cells was elevated 2.3-fold at 1-5 h PI, but dropped to 14% below control levels during 4-8 h PI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We identified seven alternatively spliced forms of human 8-oxoguanine DNA glycosylase (OGG1) mRNAs, classified into two types based on their last exons (type 1 with exon 7: 1a and 1b; type 2 with exon 8: 2a to 2e). Types 1a and 2a mRNAs are major in human tissues. Seven mRNAs are expected to encode different polypeptides (OGG1-1a to 2e) that share their N terminus with the common mitochondrial targeting signal, and each possesses a unique C terminus. A 36-kDa polypeptide, corresponding to OGG1-1a recognized only by antibodies against the region containing helix-hairpin-helix-PVD motif, was copurified from the nuclear extract with an activity introducing a nick into DNA containing 8-oxoguanine. A 40-kDa polypeptide corresponding to a processed form of OGG1-2a was detected in their mitochondria using antibodies against its C terminus. Electron microscopic immunocytochemistry and subfractionation of the mitochondria revealed that OGG1-2a locates on the inner membrane of mitochondria. Deletion mutant analyses revealed that the unique C terminus of OGG1-2a and its mitochondrial targeting signal are essential for mitochondrial localization and that nuclear localization of OGG1-1a depends on the NLS at its C terminus.  相似文献   

8.
Based on enzymatically amplified regions of the mitochondrial DNA (mtDNA), stock-specific markers were obtained for two stocks of Pleurotus ostreatus. A length mutation was detected within a region encoding for DNA of the mitochondrial ribosomes. The inheritance of mtDNA was uniparental both in Mon-Mon and Di-Mon interstock pairings. Replacement of the recipient mtDNA to a large extent was finished 3 to 4 months after hyphal contact of paired mycelia. Dissolution of mitochondrial mosaics was somewhat faster in Di-Mon than in Mon-Mon pairings. As became evident in Di-Mon pairings, the spread of the dominating mtDNA is independent from nuclear migration, and these processes could go in opposite directions. While in compatible Di-Mon pairings two different types of nuclear background develop with respect to the mating type factors, only one certain mtDNA phenotype remained after dissolution of the mitochondrial mosaic. The spread of the mtDNA occurred at a distinctly slower rate than nuclear migration. Three weeks after hyphal contact the dominating mtDNA had not reached the growing edge of the recipient mycelium, whereas clamp formation was noted after 11 days at the latest. The data presented in this study indicate that no apparent correlation exists between mtDNA and nuclear background.  相似文献   

9.
Optimal interactions among nuclear and mitochondria-coded proteins are required to assemble functional complexes of mitochondrial oxidative phosphorylation. The communication between the nuclear and mitochondrial genomes has been studied by transplacement of mitochondria from related species into mutants devoid of mitochondrial DNA (rho0). Recently we have reported that the mitochondria transferred from Saccharomyces paradoxus restored partially the respiration in Saccharomyces cerevisiae rho0 mutants. Here we present evidence that the S. cerevisiae mitochondria completely salvage from respiration deficiency, not only in conspecific isolates but also in S. paradoxus. The respiratory capacity in less-related species can be recovered exclusively in the presence of S. cerevisiae chromosomes. The efficiency of the re-established oxidative phosphorylation did not rely on the presence of introns in the S. cerevisiae mitochondrial DNA. Our results suggest that, apart from evolutionary distance, the direction of mitochondrial replacement could play a significant role in installing the complete (wild-type-like) interaction between mitochondria and nuclei from different species.  相似文献   

10.
Pluripotency of mouse trophectoderm (TE) cells was examined using a nuclear transfer technique. We transferred a TE cell to an enucleated oocyte and cultured the reconstituted oocyte to be blastocyst stage. Then a portion of the inner cell mass (ICM) isolated from the TE-origin blastocyst was injected into the cavity of a fertilized blastocyst to produce a chimeric embryo, which was transferred to a recipient female. Of 319 oocytes reconstituted with TE cells, 263 (82.4%) had a single nucleus (1PN), 3 (0.9%) had 2 nuclei (2PN) and 53 (16.6%) had a nucleus with a polar body (1PN1PB). Although the oocytes with 1PN and 2PN developed to blastocysts (81 of 263, 30.8% and 1 of 3, respectively), only those with 1PN were used to produce chimeric blastocysts. After the transfer of chimeric embryos to recipient females, 7 (28%) of 25 conceptuses analyzed at midgestation showed chimerism. Of those 5 (71%), 6 (86%) and 4 (57%) chimeric conceptuses showed distribution of donor nuclei in the fetus, membrane and placenta, and the distributions were 10 to 65, 10 to 50 and 10 to 15%, respectively. Of the 23 young obtained, 7 (30%; 2 males and 5 females) were coat color chimeras. The contributions of donor nuclei were detected in the brain, lung, heart, liver, kidney, testis, ovary and blood. Each coat-color chimeric mouse was mated with CD-1 male or female mice, but no germ line chimera was obtained. When ICM cells were used as the control nuclear donor, the contribution was equivalent to those of TE cells. In conclusion, pluripotency of mouse TE cells on a somatic line was induced, and chimeric young were obtained using a nuclear transplantation technique.  相似文献   

11.
S. B. Lee  J. W. Taylor 《Genetics》1993,134(4):1063-1075
This study tested mechanisms proposed for maternal uniparental mitochondrial inheritance in Neurospora: (1) exclusion of conidial mitochondria by the specialized female reproductive structure, trichogyne, due to mating locus heterokaryon incompatibility and (2) mitochondrial input bias favoring the larger trichogyne over the smaller conidium. These mechanisms were tested by determining the modes of mitochondrial DNA (mtDNA) inheritance and transmission in the absence of mating locus heterokaryon incompatibility following crosses of uninucleate strains of Neurospora tetrasperma with trichogyne (trichogyne inoculated by conidia) and without trichogyne (hyphal fusion). Maternal uniparental mitochondrial inheritance was observed in 136 single ascospore progeny following both mating with and without trichogyne using mtDNA restriction fragment length polymorphisms to distinguish parental types. This suggests that maternal mitochondrial inheritance following hyphal fusions is due to some mechanism other than those that implicate the trichogyne. Following hyphal fusion, mututally exclusive nuclear migration permitted investigation of reciprocal interactions. Regardless of which strain accepted nuclei following seven replicate hyphal fusion matings, acceptor mtDNA was the only type detected in 34 hyphal plug and tip samples taken from the contact and acceptor zones. No intracellular mtDNA mixtures were detected. Surprisingly, 3 days following hyphal fusion, acceptor mtDNA replaced donor mtDNA throughout the entire colony. To our knowledge, this is the first report of complete mitochondrial replacement during mating in a filamentous fungus.  相似文献   

12.
Cells are continuously exposed to oxidative species, which cause several types of oxidative DNA lesions. Repair of some of these lesions has been well characterized but little is known about the repair of many DNA lesions. The oxidized adenine base, 7,8-dihydro-8-oxoadenine (8-oxoA), is a relatively common DNA lesion, which is believed to be mutagenic in mammalian cells. This study investigates repair of 8-oxoA in nuclear and mitochondrial mammalian extracts. In nuclei, 8-oxoA:C and 8-oxoA:G base pairs are recognized and cleaved; in contrast, only 8-oxoA:C base pairs are cleaved in mitochondria. High stability of the DNA helix increased the efficiency of incision of 8-oxoA, and the efficiency decreased at DNA bends and condensed regions of the helix. Using liver extracts from mice knocked out for 8-oxoguanine DNA glycosylase 1 (OGG1), we demonstrated that OGG1 is the only glycosylase that incises 8-oxoA, when base-paired with cytosine in mitochondria and nuclei, but a different enzyme incises 8-oxoA when base-paired with guanine in the nucleus. Consistent with this result, a covalent DNA-protein complex was trapped using purified human OGG1 or human nuclear or mitochondrial extracts with a DNA substrate containing an 8-oxoA:C base pair.  相似文献   

13.
Summary Mitochondria from one syngen (or sub-species) of Paramecium aurelia have been introducted into a different syngen by preparing erythromycin-resistant mitochondria from syngen 1 and micro-injecting them into erythromycin-sensitive syngen 7 cells. The recipient sensitive cells were then placed in erythromycin to inhibit the replication of the sensitive mitochondria. Such selected clones contain a syngen 7 nucleus but a mitochondrial genome which is derived from syngen 1 erythromycin-resistant mitochondria.Using this method it has been shown that the mitochondrial enzyme fumarase is not coded by the mitochondrial genome, and by implication, is coded by the nuclear genome. The use of this technique as a method for determining if specific mitochondrial proteins are controlled by nuclear or mitochondrial genes is discussed.  相似文献   

14.
To examine normal and aberrant translation initiation in Saccharomyces cerevisiae mitochondria, we fused the synthetic mitochondrial reporter gene ARG8m to codon 91 of the COX2 coding sequence and inserted the chimeric gene into mitochondrial DNA (mtDNA). Translation of the cox2(1-91)::ARG8m mRNA yielded a fusion protein precursor that was processed to yield wild-type Arg8p. Thus mitochondrial translation could be monitored by the ability of mutant chimeric genes to complement a nuclear arg8 mutation. As expected, translation of the cox2(1-91)::ARG8m mRNA was dependent on the COX2 mRNA-specific activator PET111. We tested the ability of six triplets to function as initiation codons in both the cox2(1-91)::ARG8m reporter mRNA and the otherwise wild-type COX2 mRNA. Substitution of AUC, CCC or AAA for the initiation codon abolished detectable translation of both mRNAs, even when PET111 activity was increased. The failure of these mutant cox2(1-91)::ARG8m genes to yield Arg8p demonstrates that initiation at downstream AUG codons, such as COX2 codon 14, does not occur even when normal initiation is blocked. Three mutant triplets at the site of the initiation codon supported detectable translation, with efficiencies decreasing in the order GUG, AUU, AUA. Increased PET111 activity enhanced initiation at AUU and AUA codons. Comparisons of expression, at the level of accumulated product, of cox2(1-91)::ARG8m and COX2 carrying these mutant initiation codons revealed that very low-efficiency translation can provide enough Cox2p to sustain significant respiratory growth, presumably because Cox2p is efficiently assembled into stable cytochrome oxidase complexes.  相似文献   

15.
The percent of mitochondrial protein contamination in nuclei decreased 10-fold (from 18 to 1.8%) under purification of protein-labelled mitochondria before their introduction into nuclei-free homogenate, cytochromoxidase activity being unchanged. Thus, cytochromoxidase activity of nuclei does not correlate with the amount of nuclei-adsorbed mitochondrial protein, which demonstrates the presence of nuclear cytochromoxidase independent on mitochondrial protein. Radioactivity of protein-labelled mitochondria is proportially distributed between globuline, deoxyribonucleoprotein, acid and residual nuclear proteins, as it is shown under fractionation of nuclei isolated from protein-labeled mitochondria containing homogenate. The comparison of mitochondrial protein contamination of nuclear membranes and their possible contamination with cytochromoxidase and suecinate-cytochrome-c-reducatase activities revealed that cytochromoxidase activity of nuclear membranes is twice higher and succinate-cytochrome-c-reductase activity is considerably lower than it can be referred to mitochondrial protein contamination. The ratio of cytochrome-c-oxidase and succinate-cytochrome-c-reductase activities in isolated nuclear membranes is 4-7 times as high as that in mitochondrial membranes under the same isolation procedure. The data obtained make possible to consider the cytochromoxidase activity of nuclear membranes to be really nuclear enzyme, and not a contominant of nucleipreparation with mitochondrial membranes.  相似文献   

16.
Successful intra- and interspecific mitochondrial transfers were performed by polyethylene glycol (PEG)-induced protoplast fusion among incompatible strains belonging to the Aspergillus niger species aggregate. The mitochondrial DNAs (mtDNAs) of the strains examined were of three main types based on their restriction fragment length polymorphism (RFLP) profiles. mtDNA types 1 and 2 correspond to A. niger and A. tubingensis species, respectively, while type 3 is represented by some Brazilian wild-type isolates (possibly a distinct species or subspecies). mtDNA types 1 and 2 could be further divided into several subgroups (1a–1e and 2a–2f?). All these strains, representing different RFLP groups or subgroups, were fully incompatible with respect to nuclear complementation. The transfer experiments were carried out under selection pressure, using a mitochondrial oligomycin-resistant mutant of mtDNA type 1a as donor. Following fusion mitochondrial oligomycin-resistant progenies were recovered in the presence of oligomycin by selecting for the nuclear phenotypes of the oligomycin-sensitive recipient strains. All attempted transfers were successful, and resulted in different varieties of resistant recombinant mitochondrial progenies at various frequencies. Within the group of strains of mtDNA type 1, the transfer of oligomycin-resistant mitochondria resulted in the appearance of a single recombinant type of RFLP profile in each case. The recombination events were more complex when the transfer of oligomycin resistance occurred between strains representing different species (mtDNA groups 1a→2 and 1a→3). A great variety of recombinant mtDNA RFLP profiles appeared. Explanation for this phenomenon are discussed on the basis of preliminary physical mapping data.  相似文献   

17.
Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3′ terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion–deletion (InDel) sequence (AATTGTTTT) at the 59–67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and reliable genotyping tool to assist hybrid cotton breeding.  相似文献   

18.
Constitutive and gamma-induced ADP-ribosylation of nuclei and mitochondrial proteins in 2- and 29-month-old rats was studied. ADP-ribosylation was determined by binding of [3H]-adenin with the proteins after incubation of cellular organells in reaction mixture supplemented with [adenin-2,8-3H]-NAD. It was detected that the level of total protein ADP-ribosylation in the nuclei is 4.5-6.2 times higher than in the mitochondria. By inhibition of poly(ADP-ribose) polymerase (PARP) with 3-aminobenzamidine and treatment of ADP-ribosylated proteins with phosphodiesterase I, it was demonstrated that about 90% of [3H]-adenin bound by proteins in the nuclei and 70% in the mitochondria was the result of PARP activity. The level of total ADP-ribosylation of nuclear and mitochondrial proteins in the tissues of old rats was reliably lower than in young animals. This reduction of ADP-ribosylation in old animals is the result of the lower activity of PARP, not of mono(ADP-ribosyl) transferase (MART). The level of ADP-ribosylation of proteins in the nuclei of brain and spleen cells of 2-month-old rats irradiated with of 5 and 10 Gy was by 49-109% higher than in the control. At the same doses of radiation, the level of ADP-ribosylation of nuclear proteins in brain and spleen of old rats increased only by 29-65% compared to the control. Unlike cell nuclei, the radiation-induced activation of ADP-ribosylation in mitochondria was less expressed: the level of ADP-ribosylation increased by 34-37% in young rats and by 11-27% in old animals. This increased binding of ADP-ribose residues by the proteins of nuclei and mitochondria from tissues of gamma-irradiated rats is exceptionally conditioned by activation of poly(ADP-ribosyl)ation because the level of mono(ADP-ribosyl)ation remains constant. The results of this study enable the suggestion that poly(ADP-ribosyl)ation also occurs in the mitochondria of brain and spleen cells of the gamma-irradiated rats, though less pronounced than in cell the cell nuclei of these tissues. Thus, one of the probable causes of the less efficient repair of radiation-induced DNA damage in old organisms is a decline of both constitutive and induced poly(ADP-ribosyl)ation of proteins in cell nucleus and mitochondria.  相似文献   

19.
The objective of the study was to investigate interspecies somatic cell nuclear transfer (iSCNT) embryonic potential and mitochondrial DNA (mtDNA) segregation during preimplantation development. We generated bovine-ovine reconstructed embryos via iSCNT using bovine oocytes as recipient cytoplasm and ovine fetal fibroblast as donor cells. Chromosome composition, the total cell number of blastocyst and embryonic morphology were analyzed. In addition, mtDNA copy numbers both from donor cell and recipient cytoplasm were assessed by real-time PCR in individual blastocysts and blastomeres from 1- to 16-cell stage embryos. The results indicated the following: (1) cell nuclei of ovine fetal fibroblasts can dedifferentiate in enucleated bovine ooplasm, and the reconstructed embryos can develop to blastocysts. (2) 66% of iSCNT embryos had the same number of chromosome as that of donor cell, and the total cell number of iSCNT blastocysts was comparable to that of sheep parthenogenetic blastocysts. (3) RT-PCR analysis in individual blastomeres revealed that the ratio of donor cell mtDNA: recipient cytoplasm mtDNA remained constant (1%) from the one- to eight-cell stage. However, the ratio decreased from 0.6% at the 16-cell stage to 0.1% at the blastocyst stage. (4) Both donor cell- and recipient cytoplasm-derived mitochondria distributed unequally in blastomeres with progression of cell mitotic division. Considerable unequal mitochondrial segregation occurred between blastomeres from the same iSCNT embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号