首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(5-6):385-393
The effect of reactive oxygen species generated by the interaction of xanthine and xanthine oxidase on synaptic transmission was examined at the squid giant synapse and the lobster neuromuscular junction. Exposure of these synaptic regions to xanthine/xanthine oxidase produced a significant depression in evoked release, with no change in either resting membrane properties or in the action potential. Addition of catalase to the xanthine/xanthine oxidase-containing media partially blocked the synaptic depression, indicating that H2 O 2 contributes to the synaptic changes induced by exposure to xanthine/xanthine oxidase. H2 O 2 applied directly to the perfusing media also produced a decrease in synaptic efficacy. The results demonstrate that reactive oxygen species, in general, depress evoked synaptic transmission.  相似文献   

2.
The effects of xanthine + xanthine oxidase-generated reactive oxygen species (ROS) on rabbit muscle creatine kinase (CK) were studied. Xanthine (0.1 mM) + xanthine oxidase (30 mU/ml) inhibited activity of rabbit muscle CK (1.2mU/ml). Catalase (100/ml), but not SOD (100 U/ml), deferoxamine (100μM) or mannitol (20 mM), protected CK from inactivation; suggesting that H2O2 was responsible for inactivation. These results were different from previously reported findings on bovine heart CK that superoxide radicals inactivate the enzyme. Thus, enzymes with homologous structures may have different reactivities to different ROS. H2O2-induced inactivation of rabbit muscle CK was accompanied by a decrease in its thiol group content, whereas no significant changes in the protein structure were detected by SDS-PAGE or carbonyl content. These results suggest that oxidation of -SH groups by H2O2 seems to be a major mechanism of activation of rabbit muscle CK by xanthine + xanthine oxidase. Such inactivation of CK by H2O2 may be important in ROS-induced pathology.  相似文献   

3.
Bleomycin, in the presence of ferric salts, oxygen and a suitable reductant, degrades DNA with the release of base propenals, detected as thiobarbituric acid (TBA) reactivity, and the formation of 8-hydroxydeo-xyguanosine (80HdG) detected by HPLC. When xanthine oxidase is added to the incubated mixture of DNA degradation products, TBA-reactivity is destroyed but 80HdG formation is increased. EPR Spin trapping experiments show that hydroxyl radicals (OH) are formed in the reaction mixture and can be inhibited by the inclusion of either superoxide dismutase or catalase. These findings suggest that the base propenals and possibly malondialdehyde, formed from them, are aldehydic substrates for xanthine oxidase and, the product of this reaction is superoxide (O2-) and hydrogen peroxide (H2O2). Thus, TBA reactivity is destroyed in the formation of O2- and H2O2 which stimulate further oxidative damage to DNA resulting in increased 8OHdG formation.  相似文献   

4.
Our previous study showed that active oxygen radicals generated from a Fenton system and a xanthine plus xanthine oxidase system caused serious loss of in vivo bioactivity of recombinant human erythropoietin (EPO), a highly glycosylated protein. In the present study, we characterized the oxidative modifications to the protein and carbohydrate moiety of EPO, which lead to a reduction of its bioactivity. In vitro bioactivity was reduced when EPO was treated with oxygen radi cals generated from a Fenton system in the presence of 0.016 mM H202, and the reduction was directly proportional to the loss of in vivo bioactivity. SDS-PAGE analysis showed that dimer formation and degradation was observed under more severe conditions (Fenton reaction with 0.16 mM H202). The tryptophan destruction was detected at 0.016 mM H2O2 and well correlated with the loss of in vitro bioactivity, whereas loss of other amino acids were occurred under more severe conditions. Treatment with the Fenton system did not result in any specific damage on the carbohydrate moiety of EPO, except a reduction of sialic acid content under severe condition. These results suggest that active oxygen radicals mainly react with the protein moiety rather than the carbohydrate moiety of EPO. Destruction of tryptophan residues is the most sensitive marker of oxidative damage to EPO, suggesting the importance of tryptophan in the active EPO structure. Deglycosylation of EPO caused an increase of susceptibility to oxygen radicals compared to intact EPO. The role of oligosaccharides in EPO may be to protect the protein structure from active oxygen radicals.  相似文献   

5.
The purpose of this study was to develop a simple antioxidant screening assay for quantifying the protective effects of antioxidant enzymes, inhibitors and scavengers against extracellularly generated oxygen species on human skin fibroblast cytotoxicity. Different in vitro oxidative stresses have been studied: xanthine oxidase-hypoxanthine, flavin mononucleotide-NADH, and hydrogen peroxide. Cytotoxicity and protection were evaluated by two procedures: evaluation of the living cells using a colorimetric method (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT), and ability of the viable cells to adherate and proliferate. Hypoxanthine-xanthine oxidase and Hb02 induced a dose dependent cytotoxicity only when we considered the delayed toxicity. The influence of the cell density was also investigated. The delayed toxicity was higher when cell density increased. One hundred percent protection against free radical cytotoxicity induced by the three systems were obtained with catalase (500 U/ml). When the oxidative stress used was H202 90-96% protection was obtained with deferoxamine an iron chelating agent that prevents iron catalysed radical reactions. Using the colorimetric method no significant protection was obtained when SOD was added before and during the stresses. Using the fibroblasts ability to proliferate SOD (10-150 μ/ml) reduced xanthine oxidase (20 U/1)-hypoxanthine (0.10-0.30mM) or H202 (1-6mM) cytotoxicity by 15-20%. SOD did not act as antioxidant when the applied stress was mediated by flavin. In this study we showed a paradoxical effect and the cytotoxicity of flavin-NADH system increased when we added SOD to the cell medium. This simple and reliable antioxidant screening assay required no costly or radioactive equipment.  相似文献   

6.
Aortic rings, 4 mm in length, were obtained from rats and placed on isometric force transducers in oxygenated Krebs buffer. Following a period of stabilization, the cumulative dose response relationship to norepinephrine was assessed. The vessels were washed and allowed to return to baseline in Krebs buffer containing xanthine (0.5 mM). Xanthine oxidase (0.1 U/ml) was then added to the bath and vessels incubated for 30 min. The vessels were resuspended in Krebs buffer and cumulative dose-response curves to norepinephrine reevaluated. The results indicate that generation of reactive oxygen metabolites by xanthine/xanthine oxidase decreases the pD2 from 7.80 ± 0.04 to 7.40 ± 0.09 with the endothelium intact. Removal of the endothelium did not attenuate the contractile dysfunction, indicating that endothelial-derived metabolites were not mediating the loss of vasoconstrictor effectiveness. Maximal tension development did not differ between normal and oxidized vessel rings. Introduction of oxypurinol (0.2 mg/ml) to the bath prevented the loss of constrictor responsiveness, thereby confirming that all of the oxidants were derived from the xanthine/xanthine oxidase reaction. Superoxide dismutase (200 U/ml) partially prevented the loss of norepinephrine responsiveness produced by xanthine oxidase-derived radicals. The pD2 in the SOD + xanthine/xanthine oxidase-treated vessels rings (7.19 ± 0.11) was significantly lower tan control vessel rings (7.49 ± 0.04) and significantly higher than xanthine/xanthine oxidase-treated vessels (6.89 ± 0.06). Catalase (1000 U/ml) also partially attenuated the loss of vascular norepinephrine responsiveness. The pD2 for the catalase + xanthine/xanthine oxidase-treated vessels (7.15 ± 0.02) was significantly lower than control vessels (7.39 ± 0.07)and significantly higher than the xanthine/xanthine oxidase-treated vessels (6.82 ± 0.11). The pD2 of vessels treated with a combination of SOD and catalase (7.40 ± 0.10) did not differ from control vessels (7.49 ± 0.12). The results of this study indicate that reactive species produced by the interaction of xanthine with xanthine oxidase depress norepinephrine-induced vasoconstriction. The loss of vasoconstrictor responsiveness appears to involve both superoxide and hydrogen peroxide.  相似文献   

7.
Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µ M glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.  相似文献   

8.
为了解活性氧(reactive oxygen species,ROS)在香菇菌丝后熟转色形成中的作用及其自噬细胞学特征,以香菇工厂化菌株KS11为研究材料,分析其在菌丝后熟转色过程中4个时间点(30、45、60、75 d)的活性氧含量(ROS)、丙二醛(MDA)含量、NADPH氧化酶浓度、抗氧化酶活性以及外源活性氧和DPI对其影响的表型试验,利用透射电镜观察该过程菌丝细胞自噬特征变化,并运用实时荧光定量PCR对自噬基因Atg8的表达水平进行比较分析。结果表明:(1) H2O2作为主要的活性氧因子在菌丝后熟转色形成中呈现显著动态变化,后熟转色过程中不断升高,并在转色中第60天呈高峰值。(2) NADPH氧化酶浓度与H2O2含量变化呈紧密正相关。(3)外源施加一定浓度H2O2显著促进香菇菌丝后熟转色,且DPI作为NADPH氧化酶抑制剂显著抑制了香菇菌丝后熟转色的发生。(4)香菇菌丝后熟转色过程中,细胞自噬特征逐渐增强,并在转色中后期最显著。上述结果表明以H  相似文献   

9.
The measured ratio of xanthine oxidase activity to the total activity of xanthine oxidase and dehydrogenase showed higher values in intact cells than when similar cells were homogenized. The total activity was the same for both systems. The xanthine oxidase ratio was 90, 60, 50, 50, 60% in V79, RIF/Ha3, SCC7, KHT intact cells and freshly extracted murine peritoneal macrophages respectively while the corresponding ratios measured were 25, 40, 38, 35, 22% when the cells were lysed by homogenization. Superoxide radical 02 production by addition of xanthine to intact or homogenized cells to activate intracellular xanthine oxidase was higher in intact than homogenized cells. Homogenization of cells and tissues in the presence of dithioerythritol (DTE) can evidently lead to a considerable under-estimation of the xanthine oxidase ratio. The effect of hypoxia on cells has also been examined.  相似文献   

10.
Perfusion of isolated rat livers with ethanol at a concentration of 2g/l (%o) resulted in a release of glutamate-pyruvate-transaminase (GPT) and sorbitol dehydrogenase (SDH) into the perfusate as markers of toxicity. Inhibition of alcohol dehydrogenase by 4-methylpyrazole or of aldehyde dehydrogenase by cyanamide totally abolished ethanol hepatotoxicity despite of a severalfold increase in acetaldehyde concentration in the perfusate. Addition of superoxide dismutase or catalase clearly suppressed the ethanol-induced release of GPT and SDH, suggesting that 02∼ and H20, are involved in this process. Also. chelation of iron ions by means of desferrioxamine displayed a clear inhibitory action, suggesting the involvement of an iron-catalyzed Haber-WeiB-reaction leading to the formation of OH radicals in the hepatotoxic response to ethanol. Our data suggest that during the metabolism of acetaldehyde primary reactive oxygen species ('02∼, H202) are produced which may interact to yield hydroxyl or OH-like radicals, which possibly represent the hepatotoxic principle of ethanol.  相似文献   

11.
The effects of active oxygen species on the in vivo activity of recombinant human erythropoietin (EPO) treated by Fenton system, xanthine (X) plus xanthine oxidase (XO) system and hydrogen peroxide (H2O2) has been studied by means of counting the increase in number of hemolyser-resistant cells (HRCs) in EPO-injected mice. The results showed that both Fenton and X plus XO systems caused a significant reduction of the activity in proportion to the concentration of generated active oxygen species. Meanwhile, the treatment of EPO with H2O2 alone resulted in a relatively slight reduction of the activity. Electrophoretic studies on the structure of EPO revealed that its main protein band on sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) disappeared in proportion with the extent of exposure to active oxygen generating systems. Both Fenton and X plus XO systems caused a significant loss of fluorescence in the pyridylamino (PA-) sugar chain in proportion to the concentration of generated active oxygen species, and no degradation products in the sugar chain part of the PA-sugar chain were detected. This showed that aromatic groups in EPO were sensitive to attack by active oxygen species. These results provide evidence that hydroxyl radical and other active oxygen species have a potential to react with EPO, leading to a reduction of its in vivo activity.  相似文献   

12.
Hydrogen peroxide activation of MMb with and without the presence of BSA gave rise to rapid formation of hyper-valent myoglobin species, myoglobin ferryl radical (·MbFe(IV)=O) and/or ferrylmyoglobin (MbFe(IV)=O). Reduction of MbFe(IV)=O showed first-order kinetics for a 1-2 times stoichiometric excess of H2O2 to MMb while a 3-10 times stoichiometric excess of H2O2 resulted in a biphasic reaction pattern. Radical species formed in the reaction between MMb, H2O2 and BSA were influenced by [H2O2] as measured by electron spin resonance (ESR) spectroscopy and resulted in the formation of cross-linking between BSA and myoglobin which was confirmed by SDS-PAGE and subsequent amino acid sequencing. Moreover, dityrosine was formed in the initial phases of the reaction for all concentrations of H2O2. However, initially formed dityrosine was subsequently utilized in reactions employing stoichiometric excess of H2O2 to MMb. The observed breakdown of dityrosine was ascribed to additional radical species formed from the interaction between H2O2 and the hyper-valent iron-center of H2O2-activated MMb.  相似文献   

13.
Selective C-H bond activation of arenes catalyzed by methylrhenium trioxide   总被引:1,自引:0,他引:1  
Arenes, in glacial acetic acid, are oxidized to para-benzoquinones by hydrogen peroxide when methylrhenium trioxide (CH3ReO3 or MTO) is used as a catalyst. In some cases an intermediate hydroquinone was also obtained in lower yield. Oxidation of the methyl side chains of various methylbenzenes did not occur. The active catalyst species are the previously-characterized η2-peroxorhenium complexes, CH3Re(O)2(η2-O2) and CH3Re(O)(η2-O2)2H2O). Separate tests showed that hydroquinones and phenols are oxidized by H2O2-MTO more rapidly than the simple arenes; in the proposed mechanism they are intermediate products. Higher conversions were found for the more highly-substituted arches, consistent with their being the most reactive species toward the electrophillically-active peroxide bound to rhenium. High conversions of the less substituted members of the series were not achieved, reflecting concurrent deactivation of MTO-peroxide, a process of greater import for the more slowly-reacting substrates.  相似文献   

14.
This paper reports the syntheses and characterization of four copper phosphonates with chain structures based on (2-pyridyl-N-oxide)phosphonate, namely, [Cu2X2(C5H4NOPO3)2][Cu(H2O)6] · 2H2O [X = Cl (1), Br (2)] and CuX(C5H4NOPO3H) · H2O [X = Cl (3), Br (4)]. Compounds 1 and 2 are isostructural and show a chain structure where Cu(1) and Cu(2) are triply bridged by halide, oxygen donor of the pyridyl N-oxide and O–P–O group. The [Cu(H2O)6]2+ serves as a charge-balancing cation and locate between the chains together with the water molecules. Compounds 3 and 4 are also isostructural. In these cases, one of the three phosphonate oxygen atoms is protonated, thus leading to a neutral chain structure which is very similar to the anionic chains in compounds 1 and 2. Magnetic studies of compounds 1–4 reveal that antiferromagnetic interactions are mediated between the copper ions.  相似文献   

15.
Two new multi-cobalt-containing polyoxotungstates K4Na6Co2(H2O)12{Co(H2O)4[Co2(H2O)10Co4(H2O)2(B--SiW9O34)2]2} · 40H2O (1) and K10Na2[Co4(H2O)2(GeW9O34)2] · 20H2O (2) have been obtained by the routine synthetic reactions in aqueous solution. The polyoxoanion framework of 1 consists of two sandwich-type polyoxoanions [Co4(H2O)2(B--SiW9O34)2]12− connected together by a [CoO2(H2O)4] cluster to constitute the sandwich dimer, and then, four isolated Co(H2O)5 cations coordinate to the dimer through four μ2-O atoms. The polyoxoanion 2 is isomorphic to the sandwich-type polyoxoanion [Co4(H2O)2(B--SiW9O34)2]12− in 1. The magnetic property of compound 1 has been studied by measuring its magnetic susceptibility in the temperature range 2.0–300.0 K, indicating the existence of intramolecular ferromagnetic Co–Co interactions, and, the electrochemical properties of 1 and 2 are detected in the pH 4 buffer solution.  相似文献   

16.
Xanthine oxidoreductase (xanthine dehydrogenase + xanthine oxidase) is a complex enzyme that catalyzes the oxidation of hypoxanthine to xanthine, subsequently producing uric acid. The enzyme complex exists in separate but interconvertible forms, xanthine dehydrogenase and xanthine oxidase, which generate reactive oxygen species (ROS), a well known causative factor in ischemia/reperfusion injury and also in some other pathological states and diseases. Because the enzymes had not been localized in human corneas until now, the aim of this study was to detect xanthine oxidoreductase and xanthine oxidase in the corneas of normal post-mortem human eyes using histochemical and immunohistochemical methods. Xanthine oxidoreductase activity was demonstrated by the tetrazolium salt reduction method and xanthine oxidase activity was detected by methods based on cerium ion capture of hydrogen peroxide. For immunohistochemical studies. we used rabbit antibovine xanthine oxidase antibody, rabbit antihuman xanthine oxidase antibody and monoclonal mouse antihuman xanthine oxidase/xanthine dehydrogenase/aldehyde oxidase antibody. The results show that the enzymes are present in the corneal epithelium and endothelium. The activity of xanthine oxidoreductase is higher than that of xanthine oxidase, as clearly seen in the epithelium. Further studies are necessary to elucidate the role of these enzymes in the diseased human cornea. Based on the findings obtained in this study (xanthine oxidoreductase/xanthine oxidase activities are present in normal human corneas), we hypothesize that during various pathological states, xanthine oxidase-generated ROS might be involved in oxidative eye injury.  相似文献   

17.
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

18.
H2O2是一种重要的信号分子,参与植物体内多种生理代谢活动,但过量的H2O2破坏生物大分子,从而使细胞受到毒害。硫氧还蛋白过氧化物酶(thioredoxin peroxidase,Tpx)通过清除H2O2在保护植物免受氧化损伤方面起着重要作用。为进一步研究番茄Tpx基因(SlTpx)的功能,构建了番茄SlTpx原核表达载体,并诱导和纯化了SlTpx蛋白,发现该蛋白质大小约为21 kDa。为检测SlTpx的抗氧化功能,通过体外的混合功能氧化酶(MFO)实验、过氧化氢清除实验和SlTpx蛋白体外抗重金属和H2O2实验,证明SlTpx可以保护DNA不受有害活性氧切割,并且提高大肠杆菌抵抗重金属和H2O2胁迫的能力。为揭示SlTpx在植物中的功能和作用机制奠定基础。  相似文献   

19.
An efficient one-pot catalytic method to obtain 4,6-dimethyl-2-hydroxyacetophenone (A) is reported, the reaction proceeds via the intermolecular auto-condensation of 2,4-pentanedione using samarium(III) acetylacetonate (Sm(AcAc)3) as promoter. A novel complex [Sm(CH3COO)3(H2O)2](H2O)2 (I) was isolated from the reaction media. The structure of I was determined by X-ray crystallography showing that the central atom is ennea-coordinated (monocapped square-antiprism geometry). This complex I also shows activity in the named autocondensation reaction.  相似文献   

20.
A new compound containing a cubane tungsten chalcogenide cluster [W43-Te)4(CN)12]6− and Ca2+ complex units has been prepared by the reaction of aqueous solution of K6[W43-Te)4(CN)12] · 5H2O with the solution of a Ca(NO3)2 and phen(1,10-phenanthroline) (1:2 molar ratio) in a solvent mixture of H2O/EtOH. The structure of [{Ca(phen)2(H2O)}{Ca(phen)(H2O)4}{Ca(phen)2(H2O)3}][W4Te4(CN)12] · 5H2O 1 has been determined by X-ray crystallography. Compound 1 contains [{Ca(phen)(H2O)4}{Ca(phen)2(H2O)3}][W43- Te)4(CN)12] units bridged by {Ca(phen)2(H2O)}2+ units to form an one-dimensional zigzag chain structure. Interestingly, compound 1 showed a heterogeneous catalytic activity in the transesterification of a range of esters with methanol under the mild conditions. Moreover, it can be reused without any loss of activity through 10 runs with ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号