首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The distal part of the mouse Chr 12 contains a cluster of reciprocally imprinted genes. Recently we found a grandparental origin-dependent, transmission-ratio distortion (TRD) in this region. The TRD resulted from postimplantation loss of embryos that inherited the distal Chr 12 alleles from the maternal grandfather. These data suggested that imprinting of one or more genes in this region was not uniformly well established or maintained in all the embryos. To elucidate the mechanism underlying such a variation, we examined the expression of two genes from the distal Chr 12 imprinted region, the maternally expressed gene 3/gene-trap locus 2 ( Meg3/ Gtl2), and the delta-like homolog 1 ( Dlk1) gene. We demonstrated that the Meg3/ Gtl2 gene had two major mRNA forms. One form, Meg3-proximal ( Meg3p), contained exons 1-3. The second form, Meg3-distal ( Meg3d) did not contain exons 1-3 and was present in oocytes and in 1- and 2-cell embryos. We observed cross-dependent and splice form-specific relaxation of imprinting of the Dlk1 and Meg3d, but not Meg3p. Expression patterns of Dlk1 and Meg3/ Gtl2 in embryos from crosses between different mouse strains suggest that 1). imprinting of the Dlk1 and Meg3/ Gtl2 genes is not strictly coordi- nated; 2). parental origin-dependent expression of these genes is under control of a strain-specific, cis-acting modifier located in a 1.5-Mb region that includes the Meg3/ Gtl2-Dlk1 locus. Biallelic expression of Dlk1 and Meg3d did not affect embryo viability and, therefore, cannot be responsible for the lethal phenotypes in UPD12 embryos or for the transmission-ratio distortion.  相似文献   

2.
Transmission ratio distortion (TRD) is a deviation from the expected Mendelian 1:1 ratio of alleles transmitted from parents to offspring and may arise by different mechanisms. Earlier we described a grandparental-origin-dependent sex-of-offspring-specific TRD of maternal chromosome 12 alleles closely linked to an imprinted region and hypothesized that it resulted from imprint resetting errors in the maternal germline. Here, we report that the genotype of the parents for loss-of-function mutations in the Dnmt1 gene influences the transmission of grandparental chromosome 12 alleles. More specifically, maternal Dnmt1 mutations restore Mendelian transmission ratios of chromosome 12 alleles. Transmission of maternal alleles depends upon the presence of the Dnmt1 mutation in the mother rather than upon the Dnmt1 genotype of the offspring. Paternal transmission mirrors the maternal one: live-born offspring of wild-type fathers display 1:1 transmission ratios, whereas offspring of heterozygous Dnmt1 mutant fathers tend to inherit grandpaternal alleles. Analysis of allelic transmission in the homologous region of human chromosome 14q32 detected preferential transmission of alleles from the paternal grandfather to grandsons. Thus, parental Dnmt1 is a modifier of transmission of alleles at an unlinked chromosomal region and perhaps has a role in the genesis of TRD.  相似文献   

3.
Imprinting and deviation from Mendelian transmission ratios.   总被引:4,自引:0,他引:4  
Deviations from a Mendelian 1:1 transmission ratio have been observed in human and mouse chromosomes. With few exceptions, the underlying mechanism of the transmission-ratio distortion remains obscure. We tested a hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and possibly results from the loss of embryos which carry imprinted genes with imprinting marks that have been incorrectly reset. We analyzed transmission of alleles in four regions of the human genome that carry imprinted genes presumably critical for normal embryonic growth and development: 11p15.5 (H19, IGF2, HASH2, etc.), 11p13 (WT1), 7p11-12 (GRB10), and 6q25-q27 (IGF2R), among the offspring of 31 three-generation Centre d'Etude de polymorphism Humain (CEPH) families. Deviations from expected 1:1 ratios were found in the maternal chromosomes for regions 11p15.5, 11p13, and 6q25-27 and in the paternal chromosomes for regions 11p15 and 7p11-p12. The likelihood of the results was assessed empirically to be statistically significant (p = 0.0008), suggesting that the transmission ratios in the imprinted regions significantly deviated from 1:1. We did not find deviations from a 1:1 transmission ratio in imprinted regions that are not crucial for embryo viability (13q14 and 15q11-q13). The analysis of a larger set of 51 families for the 11p15.5 region suggests that there is heterogeneity among the families with regard to the transmission of 11p15.5 alleles. The results of this study are consistent with the hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and embryo loss.  相似文献   

4.
The distal end of mouse chromosome 7 (Chr 7) contains a large cluster of imprinted genes. In this region two cis-acting imprinting centers, IC1 (H19 DMR) and IC2 (KvDMR1), define proximal and distal subdomains, respectively. To assess the functional independence of IC1 in the context of Chr 7, we developed a recombinase-mediated chromosome truncation strategy in embryonic stem cells and generated a terminal deletion allele, DelTel7, with a breakpoint in between the two subdomains. We obtained germ line transmission of the truncated Chr 7 and viable paternal heterozygotes, confirming the absence of developmentally required paternally expressed genes distal of Ins2. Conversely, maternal transmission of DelTel7 causes a midgestational lethality, consistent with loss of maternally expressed genes in the IC2 subdomain. Expression and DNA methylation analyses on DelTel7 heterozygotes demonstrate the independent imprinting of IC1 in absence of the entire IC2 subdomain. The evolutionarily conserved linkage between the subdomains is therefore not required for IC1 imprinting on Chr 7. Importantly, the developmental phenotype of maternal heterozygotes is rescued fully by a paternally inherited deletion of IC2. Thus, all the imprinted genes located in the region and required for normal development are silenced by an IC2-dependent mechanism on the paternal allele.  相似文献   

5.
We have analyzed the transmission of maternal alleles at loci spanning the length of the X chromosome in 47 normal, genetic disease-free families. We found a significant deviation from the expected Mendelian 1:1 ratio of grandpaternal:grandmaternal alleles at loci in Xp11.4-p21.1. The distortion in inheritance ratio was found only among male offspring and was manifested as a strong bias in favor of the inheritance of the alleles of the maternal grandfather. We found no evidence for significant heterogeneity among the families, which implies that the major determinant involved in the generation of the non-Mendelian ratio is epigenetic. Our analysis of recombinant chromosomes inherited by male offspring indicates that an 11.6-cM interval on the short arm of the X chromosome, bounded by DXS538 and DXS7, contains an imprinted gene that affects the survival of male embryos.  相似文献   

6.
Wu G  Hao L  Han Z  Gao S  Latham KE  de Villena FP  Sapienza C 《Genetics》2005,170(1):327-334
We have observed maternal transmission ratio distortion (TRD) in favor of DDK alleles at the Ovum mutant (Om) locus on mouse chromosome 11 among the offspring of (C57BL/6 x DDK) F(1) females and C57BL/6 males. Although significant lethality occurs in this backcross ( approximately 50%), differences in the level of TRD found in recombinant vs. nonrecombinant chromosomes among offspring argue that TRD is due to nonrandom segregation of chromatids at the second meiotic division, i.e., true meiotic drive. We tested this hypothesis directly, by determining the centromere and Om genotypes of individual chromatids in zygote stage embryos. We found similar levels of TRD in favor of DDK alleles at Om in the female pronucleus and TRD in favor of C57BL/6 alleles at Om in the second polar body. In those embryos for which complete dyads have been reconstructed, TRD was present only in those inheriting heteromorphic dyads. These results demonstrate that meiotic drive occurs at MII and that preferential death of one genotypic class of embryo does not play a large role in the TRD.  相似文献   

7.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are caused by the loss of function of imprinted genes in proximal 15q. In approximately 2%-4% of patients, this loss of function is due to an imprinting defect. In some cases, the imprinting defect is the result of a parental imprint-switch failure caused by a microdeletion of the imprinting center (IC). Here we describe the molecular analysis of 13 PWS patients and 17 AS patients who have an imprinting defect but no IC deletion. Heteroduplex and partial sequence analysis did not reveal any point mutations of the known IC elements, either. Interestingly, all of these patients represent sporadic cases, and some share the paternal (PWS) or the maternal (AS) 15q11-q13 haplotype with an unaffected sib. In each of five PWS patients informative for the grandparental origin of the incorrectly imprinted chromosome region and four cases described elsewhere, the maternally imprinted paternal chromosome region was inherited from the paternal grandmother. This suggests that the grandmaternal imprint was not erased in the father's germ line. In seven informative AS patients reported here and in three previously reported patients, the paternally imprinted maternal chromosome region was inherited from either the maternal grandfather or the maternal grandmother. The latter finding is not compatible with an imprint-switch failure, but it suggests that a paternal imprint developed either in the maternal germ line or postzygotically. We conclude (1) that the incorrect imprint in non-IC-deletion cases is the result of a spontaneous prezygotic or postzygotic error, (2) that these cases have a low recurrence risk, and (3) that the paternal imprint may be the default imprint.  相似文献   

8.
Imprinted genes are distinguished by different patterns of methylation on their parental alleles, a property by which imprinted loci could be identified systematically. Here, representational difference analysis (RDA) is used to clone HpaII fragments with methylation differences on the maternal and paternal copies of distal chromosome (Chr) 2 in the mouse. Uniparental inheritance for this region causes imprinting phenotypes whose molecular basis is only partially understood. RDA led to the recovery of multiple differentially methylated HpaII fragments at two major sites of imprinted methylation: paternal-specific methylation at the Nesp locus and maternal-specific methylation at the Gnasxl locus. Nesp and Gnasxl represent oppositely imprinted promoters of the Gnas gene, which encodes the G-protein subunit, Gsalpha. The organization of the Nesp-Gnasxl-Gnas region was determined: Nesp and Gnasxl were found to be 15 kb apart, and Gnasxl was found to be 30 kb upstream of Gnas. Sites of imprinted methylation were also detected at the loci for neuronatin on Chr 2 and for M-cadherin on Chr 8. RDA was highly effective at identifying imprinted methylation, and its potential applications to imprinting studies are discussed.  相似文献   

9.
Mice with maternal duplication for proximal chromosome 6 (Chr 6) die in utero before 11.5 dpc, an effect that can be attributed to genomic imprinting. Previous studies have defined the region of Chr 6 responsible as lying proximal to the T6Ad translocation breakpoint in G-band 6B3. Evidence presented here with a new Chr 6 translocation T77H has substantially reduced the size of the imprinting region, locating it between G-band 6A3.2 and the centromere. The paternally expressed imprinted gene Mest had been mapped within the original imprinting region and was therefore a candidate for the early embryonic lethality. FISH has shown that Mest locates distal to T77H and therefore outside the redefined imprinting region. This evidence confirms that Mest is not a candidate for the early embryonic lethality found with two maternal copies of proximal Chr 6. Furthermore mice with maternal duplication for Ch 6 distal to T77H (MatDp.dist6) were found to be growth retarded at birth, the weight reduction remaining similar until adulthood. It can be concluded that the growth retardation is established in utero and is maintained at a similar level from birth to adulthood. Therefore Mest locates in a new imprinting region, distal to G-band 6A3.2 which affects growth. A targeted mutation of Mest has been reported that exhibits growth retardation, reduced postnatal survival and abnormal maternal behaviour. Here the phenotype of MatDp.dist6 mice is compared to that of Mest-deficient mutant mice. Unlike the latter, MatDp.dist6 mice have good survival rates and females have normal maternal behaviour. Possible reasons for these differences are discussed.  相似文献   

10.
Mills W  Moore T 《Genetics》2004,168(4):2317-2327
Genomic imprinting causes parental origin-dependent differential expression of a small number of genes in mammalian and angiosperm plant embryos, resulting in non-Mendelian inheritance of phenotypic traits. The "conflict" theory of the evolution of imprinting proposes that reduced genetic relatedness of paternally, relative to maternally, derived alleles in offspring of polygamous females supports parental sex-specific selection at gene loci that influence maternal investment. While the theory's physiological predictions are well supported by observation, the requirement of polyandry in the evolution of imprinting from an ancestral Mendelian state has not been comprehensively analyzed. Here, we use diallelic models to examine the influence of various degrees of polyandry on the evolution of both Mendelian and imprinted autosomal gene loci that influence trade-offs between maternal fecundity and offspring viability. We show that, given a plausible assumption on the physiological relationship between maternal fecundity and offspring viability, low levels of polyandry are sufficient to reinforce exclusively the fixation of "greedy" paternally imprinted alleles that increase offspring viability at the expense of maternal fecundity and "thrifty" maternally imprinted alleles of opposite effect. We also show that, for all levels of polyandry, Mendelian alleles at genetic loci that influence the trade-off between maternal fecundity and offspring viability reach an evolutionary stable state, whereas pairs of reciprocally imprinted alleles do not.  相似文献   

11.
We have developed an imprinting assay combining the use of mice carrying maternal or paternal duplication of chromosomal regions of interest with custom oligonucleotide microarrays. As a model system, we analyzed RNA from CNS tissue of neonatal mice carrying the reciprocal translocation T(7;15)9H and uniparental duplication of proximal Chr 7 and 15. The duplicated region includes the locus on proximal Chr 7 corresponding to the human Prader-Willi/Angelman Syndrome. The microarray contained 322 oligonucleotides, including probes to detect major genes involved in neural excitability and synaptic transmission, as well as known imprinted genes mapping to proximal Chr 7: Ndn, Snrpn, Mkrn3, Magel2, Peg3, and Ube3a. Imprinting of these genes in neonatal cortex and cerebellum was first confirmed by quantitative RT-PCR. Their inclusion on the microarray thus provided positive controls for evaluating the effect of background on the sensitivity of the assay, and for establishing the minimum level of expression required to detect imprinting. Our analysis extended previous work by revealing bi-allelic expression in CNS tissue of those queried genes mapping to proximal Chr 7 or 15, including the Gabrb3 gene, for which there have been conflicting reports. Microarray analysis also revealed no effect of the maternal or paternal disomy on expression levels of the unlinked genes detected, including those potentially implicated in the Prader-Willi or Angelman Syndrome. In addition, quantitative RT-PCR revealed a gene dosage effect in both cerebellum and cortex for all of the known imprinted genes assayed, except for Ube3a in cerebellum.  相似文献   

12.
Previous studies (Beechey, 2000) have shown that mouse proximal chromosome (Chr) 6 has two imprinting regions. An early embryonic lethality is associated with two maternal copies of the more proximal imprinting region, while mice with two maternal copies of the sub-proximal imprinting region are growth retarded at birth, the weight reduction remaining similar to adulthood. No detectable postnatal imprinting phenotype was seen in these earlier studies with two paternal copies of either region. The sub-proximal imprinting region locates distal to the T77H reciprocal translocation breakpoint in G-band 6A3.2 and results reported here show that it does not extend beyond the breakpoint of the more distal T6Ad translocation in 6C2. It has been confirmed that the postnatal growth retardation observed with two maternal copies of the sub-proximal region is established in utero, although placental size was normal. A new finding is that 16.5-18.5-dpc embryos, with two paternal copies of the sub-proximal imprinting region, were larger than their normal sibs, although placental size was normal. As no postnatal growth differences have been observed in these mice, the fetal overgrowth must normalize by birth. The imprinted genes Peg1/Mest, Copg2, Copg2as and Mit1/Lb9 map to the sub-proximal imprinting region and are thus candidates for the observed imprinting phenotypes. Another candidate is the recently reported imprinted gene Nap1l5. Expression studies of Nap1l5 in mice with two maternal or two paternal copies of different regions of Chr 6 have demonstrated that the gene locates within the sub-proximal imprinting region. FISH has mapped Nap1l5 to G-band 6C1, within the sub-proximal imprinting region but several G-bands distal to the Peg1/Mest cluster. This location, and the 30-Mb separation of these loci on the sequence map, makes it probable that Nap1l5 defines a new imprinting domain within the currently defined sub-proximal imprinting region.  相似文献   

13.

Background  

Several imprinted genes have been implicated in the process of placentation. The distal region of mouse chromosome 7 (Chr 7) contains at least ten imprinted genes, several of which are expressed from the maternal homologue in the placenta. The corresponding paternal alleles of these genes are silenced in cis by an incompletely understood mechanism involving the formation of a repressive nuclear compartment mediated by the long non-coding RNA Kcnq1ot1 initiated from imprinting centre 2 (IC2). However, it is unknown whether some maternally expressed genes are silenced on the paternal homologue via a Kcnq1ot1-independent mechanism. We have previously reported that maternal inheritance of a large truncation of Chr7 encompassing the entire IC2-regulated domain (DelTel7 allele) leads to embryonic lethality at mid-gestation accompanied by severe placental abnormalities. Kcnq1ot1 expression can be abolished on the paternal chromosome by deleting IC2 (IC2KO allele). When the IC2KO mutation is paternally inherited, epigenetic silencing is lost in the region and the DelTel7 lethality is rescued in compound heterozygotes, leading to viable DelTel7/IC2KO mice.  相似文献   

14.
Epigenetic Resetting of a Gene Imprinted in Plant Embryos   总被引:1,自引:0,他引:1  
Genomic imprinting resulting in the differential expression of maternal and paternal alleles in the fertilization products has evolved independently in placental mammals and flowering plants. In most cases, silenced alleles carry DNA methylation [1]. Whereas these methylation marks of imprinted genes are generally erased and reestablished in each generation in mammals [2], imprinting marks persist in endosperms [3], the sole tissue of reported imprinted gene expression in plants. Here we show that the maternally expressed in embryo 1 (mee1) gene of maize is imprinted in both the embryo and endosperm and that parent-of-origin-specific expression correlates with differential allelic methylation. This epigenetic asymmetry is maintained in the endosperm, whereas the embryonic maternal allele is demethylated on fertilization and remethylated later in embryogenesis. This report of imprinting in the plant embryo confirms that, as in mammals, epigenetic mechanisms operate to regulate allelic gene expression in both embryonic and extraembryonic structures. The embryonic methylation profile demonstrates that plants evolved a mechanism for resetting parent-specific imprinting marks, a necessary prerequisite for parent-of-origin-dependent gene expression in consecutive generations. The striking difference between the regulation of imprinting in the embryo and endosperm suggests that imprinting mechanisms might have evolved independently in both fertilization products of flowering plants.  相似文献   

15.
Ogawa H  Wu Q  Komiyama J  Obata Y  Kono T 《FEBS letters》2006,580(22):5377-5384
In mammals, imprinted genes show parental origin-dependent expression based on epigenetic modifications called genomic imprinting (GI), which are established independently during spermatogenesis or oogenesis. Due to GI, uniparental fetuses never develop to term. To determine whether such expression of imprinted genes is maintained in uniparental mouse fetuses, we analyzed the expression of 20 paternally and 11 maternally expressed genes in androgenetic and parthenogenetic fetuses. Four genes of each type were expressed in both groups of fetuses. Furthermore, quantitative analysis showed that expression levels deviated from the presumed levels for some imprinted genes. These results suggest that mechanisms acting in trans between paternal and maternal alleles are involved in the appropriate expression of some imprinted genes.  相似文献   

16.
17.
Goldberg M  Wei M  Yuan L  Murty VV  Tycko B 《Human genetics》2003,112(4):334-342
At least eight genes clustered in 1 Mb of DNA on human chromosome (Chr) 11p15.5 are subject to parental imprinting, with monoallelic expression in one or more tissues. Orthologues of these genes show conserved linkage and imprinting on distal Chr 7 of mice. The extended imprinted region has a bipartite structure, with at least two differentially methylated DNA elements (DMRs) controlling the imprinting of two sub-domains. We previously described three biallelically expressed genes ( MRPL23, 2G7 and TNNT3) in 100 kb of DNA immediately downstream of the imprinted H19 gene, suggesting that H19 marks one border of the imprinted region. Here we extend this analysis to two additional downstream genes, HRAS and MUCDHL (mu-protocadherin). We find that these genes are biallelically expressed in multiple fetal and adult tissues, both in humans and in mice. The mouse orthologue of a third gene, DUSP8, located between H19 and MUCDHL, is also expressed biallelically. The DMR immediately upstream of H19 frequently shows a net gain of methylation in Wilms tumors, either via Chr 11p15.5 loss of heterozygosity (LOH) or loss of imprinting (LOI), but changes in methylation in CpG-rich sequences upstream and within the MUCDHL gene are rare in these tumors and do not correlate with LOH or LOI. These findings are further evidence for a border of the imprinted region immediately downstream of H19, and the data allow the construction of an imprinting map that includes more than 20 genes, distributed over 3 Mb of DNA on Chr 11p15.5.  相似文献   

18.
19.
The Evolution of Genomic Imprinting   总被引:1,自引:1,他引:0       下载免费PDF全文
A. Mochizuki  Y. Takeda    Y. Iwasa 《Genetics》1996,144(3):1283-1295
In some mammalian genes, the paternally and maternally derived alleles are expressed differently: this phenomenon is called genomic imprinting. Here we study the evolution of imprinting using multivariate quantitative genetic models to examine the feasibility of the genetic conflict hypothesis. This hypothesis explains the observed imprinting patterns as an evolutionary outcome of the conflict between the paternal and maternal alleles. We consider the expression of a zygotic gene, which codes for an embryonic growth factor affecting the amount of maternal resources obtained through the placenta. We assume that the gene produces the growth factor in two different amounts depending on its parental origin. We show that genomic imprinting evolves easily if females have some probability of multiple partners. This is in conflict with the observation that not all genes controlling placental development are imprinted and that imprinting in some genes is not conserved between mice and humans. We show however that deleterious mutations in the coding region of the gene create selection against imprinting.  相似文献   

20.
Genomic imprinting is one of the most significant epigenetic phenomena, which is involved in the support of eutherians and human embryo development. Molecular mechanisms of imprinting disturbance in the pathology of pre- and postnatal ontogeny are related to a considerable degree to aberrant DNA methylation of imprinted genes. At present time data about multiple abnormalities of DNA methylation arising simultaneously in several imprinted loci are accumulated. This fact brings up the problem of interpretation of imprintome structural and functional organization, as well as interaction of imprinted genes. At present study DNA methylation analysis of 51 imprinted genes in placental tissues of human spontaneous abortions was performed. The presence of several epimutations affected from four to 12 imprinted genes was observed in each embryo. Majority of epimutations (78%) had a postzygotic origin. It was shown for the first time that the total incidence of abnormal DNA methylation of maternal and paternal alleles of imprinted genes, which lead to suppression of embryo development, is significantly higher than the incidence of epimutations, which can lead to stimulation of ontogenesis processes. This fact supports at the epigenetic level the "sex conflict" hypothesis, which explains the appearance of monoallelic imprinted genes expression in the evolution of mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号