首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Nagy JK  Lonzer WL  Sanders CR 《Biochemistry》2001,40(30):8971-8980
Despite the relevance of membrane protein misfolding to a number of common diseases, our understanding of the folding and misfolding of membrane proteins lags well behind soluble proteins. Here, the overall kinetics of membrane insertion and folding of the homotrimeric integral membrane protein diacylglycerol kinase (DAGK) is addressed. DAGK was purified into lipid/detergent-free urea and guanidinium solutions and subjected to general structural characterization. In urea, the enzyme was observed to be monomeric but maintained considerable tertiary structure. In guanidinium, it was also monomeric but exhibited much less tertiary structure. Aliquots of these DAGK stock solutions were diluted 200-fold into lipid vesicles or into detergent/lipid mixed micelles, and the rates and efficiencies of folding/insertion were monitored. Reactions were also carried out in which micellar DAGK solutions were diluted into vesicular solutions. Productive insertion of DAGK from denaturant solutions into mixed micelles occurred much more rapidly than into lipid vesicles, suggesting that bilayer transversal represents the rate-limiting step for DAGK assembly in vesicles. The efficiency of productive folding/insertion into vesicles was highest in reactions initiated with micellar DAGK stock solutions (where DAGK maintains a nativelike fold and oligomeric state) and lowest in reactions starting with guanidinium stocks (where DAGK is an unfolded monomer). Moreover, the final ratio of irreversibly misfolded DAGK to reversibly misfolded enzyme was highest following reactions initiated with guanidinium stock solutions and lowest when micellar stocks were used. Finally, it was also observed that very low concentrations of detergents were able to both enhance the bilayer insertion rate and suppress misfolding.  相似文献   

2.
While the formation of kinetically trapped misfolded structural states by membrane proteins is related to a number of diseases, relatively few studies of misfolded membrane proteins in their purified state have been carried out and few methods for refolding such proteins have been reported. In this paper, misfolding of the trimeric integral membrane protein diacylglycerol kinase (DAGK) is documented and a method for refolding the protein is presented; 65 single-cysteine mutants of DAGK were examined. A majority were found to have lower-than-expected activities when purified into micellar solutions, with additional losses in activity often being observed following membrane reconstitution. A variety of evidence indicates that the low activities observed for most of these mutants results from kinetically based misfolding of the protein, with misfolding often being manifested by the formation of aberrant oligomeric states. A method referred to as "reconstitutive refolding" for correcting misfolded DAGK is presented. This method is based upon reconstituting DAGK into multilamellar POPC vesicles by dialyzing the detergent dodecylphosphocholine out of mixed micellar mixtures. For 55 of the 65 mutants tested, there was a gain of DAGK activity during reconstitutive refolding. In 33 of these cases, the gain in activity was greater than 2-fold. The refolding results for cysteine replacement mutants at DAGK sites known to be highly conserved provide teleological insight into whether sites are conserved, because they are critical for catalysis, for maintenance of the proper folding pathway, or for some other reason.  相似文献   

3.
In this report, (19)F spin incorporation in a specific site of a specific membrane protein in E. coli was accomplished via trifluoromethyl-phenylalanine ((19) F-tfmF). Site-specific (19)F chemical shifts and longitudinal relaxation times of diacylglycerol kinase (DAGK), an E. coli membrane protein, were measured in its native membrane using in situ magic angle spinning (MAS) solid state nuclear magnetic resonance (NMR). Comparing with solution NMR data of the purified DAGK in detergent micelles, the in situ MAS-NMR data illustrated that (19)F chemical shift values of residues at different membrane protein locations were influenced by interactions between membrane proteins and their surrounding lipid or lipid mimic environments, while (19)F side chain longitudinal relaxation values were probably affected by different interactions of DAGK with planar lipid bilayer versus globular detergent micelles.  相似文献   

4.
Nagy JK  Sanders CR 《Biochemistry》2002,41(29):9021-9025
Although a number of common diseases are a direct consequence of membrane protein misfolding, studies of membrane protein folding and misfolding lag well behind those of soluble proteins. Here it is shown that an interfacial residue, Tyr16, of the integral membrane protein diacylglycerol kinase (DAGK) plays a critical role in the folding pathway of this protein. Properly folded Y16C exhibits kinetic parameters and stability similar to wild-type DAGK. However, when unfolded and then allowed to spontaneously fold in the presence of model membranes, Y16C exhibits dramatically lower rates and efficiencies of functional assembly compared to the wild-type protein. The Y16C mutant represents a class of mutations which may be commonly found in disease-related membrane proteins.  相似文献   

5.
Diacylglycerol kinase (DAGK) is a 13-kDa integral membrane protein that spans the lipid bilayer three times and which is active in some micellar systems. In this work DAGK was purified using metal ion chelate chromatography, and its structural properties in micelles and organic solvent mixtures studies were examined, primarily to address the question of whether the structure of DAGK can be determined using solution NMR methods. Cross-linking studies established that DAGK is homotrimeric in decyl maltoside (DM) micelles and mixed micelles. The aggregate detergent-protein molecular mass of DAGK in both octyl glucoside and DM micelles was determined to be in the range of 100-110 kDa-much larger than the sum of the molecular weights of the DAGK trimers and the protein-free micelles. In acidic organic solvent mixtures, DAGK-DM complexes were highly soluble and yielded relatively well-resolved NMR spectra. NMR and circular dichroism studies indicated that in these mixtures the enzyme adopts a kinetically trapped monomeric structure in which it irreversibly binds several detergent molecules and is primarily alpha-helical, but in which its tertiary structure is largely disordered. Although these results provide new information regarding the native oligomeric state of DAGK and the structural properties of complex membrane proteins in micelles and organic solvent mixtures, the results discourage the notion that the structure of DAGK can be readily determined at high resolution with solution NMR methods.  相似文献   

6.
Nagy JK  Lau FW  Bowie JU  Sanders CR 《Biochemistry》2000,39(14):4154-4164
This work represents the first stage of thiol-based cross-linking studies to map the oligomeric interface of the homotrimeric membrane protein diacylglycerol kinase (DAGK). A total of 53 single-cysteine mutants spanning DAGK's three transmembrane segments and the first part of a cytoplasmic domain were purified and subjected to catalytic oxidation in mixed micelles. Four mutants (A52C, I53C, A74C, and I75C) were observed to undergo intratrimer disulfide bond formation between homologous sites on adjacent subunits. To establish whether the homologous sites are proximal in the ground-state conformation of DAGK or whether the disulfide bonds formed as a result of motions that brought normally distal sites into transient proximity, additional cross-linking experiments were carried out in three different milieus of varying fluidity [mixed micelles, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles, and Escherichia coli membranes]. Cross-linking experiments included disulfide bond formation under three different catalytic conditions [Cu(II)-phenanthroline oxidation, I(2) oxidation, and thionitrobenzoate-based thiol exchange] and reactions with a set of bifunctional thiol-reactive chemical cross-linkers presenting two different reactive chemistries and several spacer lengths. On the basis of these studies, residues 53 and 75 are judged to be in stable proximity within the DAGK homotrimer, while position 52 appears to be more distal and forms disulfide bonds only as a result of protein motions. Results for position 74 were ambiguous. In lipid vesicles and mixed micelles DAGK appears to execute motions that are not present in native membranes, with mobility also being higher for DAGK in mixed micelles than in POPC vesicles.  相似文献   

7.
Quantitative studies of membrane protein folding and unfolding can be difficult because of difficulties with efficient refolding as well as a pronounced propensity to aggregate. However, mixed micelles, consisting of the anionic detergent sodium dodecyl sulfate and the nonionic detergent dodecyl maltoside facilitate reversible and quantitative unfolding and refolding. The 4-transmembrane helix protein DsbB from the inner membrane of Escherichia coli unfolds in mixed micelles according to a three-state mechanism involving an unfolding intermediate I. The temperature dependence of the kinetics of this reaction between 15 degrees and 45 degrees C supports that unfolding from I to the denatured state D is accompanied by a significant decrease in heat capacity. For water-soluble proteins, the heat capacity increases upon unfolding, and this is generally interpreted as the increased binding of water to the protein as it unfolds, exposing more surface area. The decrease in DsbB's heat capacity upon unfolding is confirmed by independent thermal scans. The decrease in heat capacity is not an artifact of the use of mixed micelles, since the water soluble protein S6 shows conventional heat-capacity changes in detergent. We speculate that it reflects the binding of SDS to parts of DsbB that are solvent-exposed in the native DM-bound state. This implies that the periplasmic loops of DsbB are relatively unstructured. This anomalous thermodynamic behavior has not been observed for beta-barrel membrane proteins, probably because they do not bind SDS so extensively. Thus the thermodynamic behavior of membrane proteins appears to be intimately connected to their detergent-binding properties.  相似文献   

8.
In this work, the relationship between stability and propensity to misfold was probed for a series of purified variants of the polytopic integral membrane protein diacylglycerol kinase. It was observed that there was a strong correlation between stability and folding efficiency. The most common mutations that promoted misfolding were those which also destabilized the protein. These results imply that by targeting unstable membrane proteins for degradation, cellular protein folding quality control can eliminate proteins that have a high intrinsic propensity to misfold into aberrant structures. Moreover, the more rare class of amino acid mutations that promote misfolding without perturbing stability may be particularly dangerous because the mutant proteins may evade the surveillance of cellular quality control systems.  相似文献   

9.
Translational diffusion coefficients and catalytic activities were measured for the integral membrane protein diacylglycerol kinase (DAGK) in a variety of types of detergent micelles. Despite the structural diversity of the detergents examined, the translational diffusion coefficients observed for DAGK spanned a fairly limited range of values: 2.7 to 4.7 (× 10-7cm2/s). No general correlation was observed between the diffusion coefficients for the detergent-DAGK aggregates and the sizes of the corresponding protein-free micelles. These results indicate that the effective molecular weights of the DAGK-detergent aggregates were determined more by the structural properties of the protein than by the properties of the detergents. The catalytic activity of DAGK in detergents having medium-length alkyl chains such as dodecylphosphocholine or decylmaltoside was usually observed to be substantially higher than in short-chain detergents such as octylphosphocholine or octylglucoside. Taken together, the diffusion and activity results indicate that medium-chain detergents are generally preferred for use in NMR studies of complex membrane proteins because they are no worse than short-chained detergents in terms of increasing the effective molecular weight of the protein of interest while they are considerably better at maintaining native-like protein conformation. Among the 10 detergents examined, only sodium dodecylsulfate was observed to be unable to support DAGK activity under any conditions examined, suggesting that this well-known protein denaturant should be used with care in studies of complex membrane proteins.  相似文献   

10.
Gene duplications, deletions, and point mutations in peripheral myelin protein 22 (PMP22) are linked to several inherited peripheral neuropathies. However, the structural and biochemical properties of this very hydrophobic putative tetraspan integral membrane protein have received little attention, in part because of difficulties in obtaining milligram quantities of wild type and disease-linked mutant forms of the protein. In this study a fusion protein was constructed consisting of a fragment of lambda repressor, a decahistidine tag, an intervening TEV protease cleavage site, a Strep tag, and the human PMP22 sequence. This fusion protein was expressed in Escherichia coli at a level of 10-20 mg/L of protein. Following TEV cleavage of the fusion partner, PMP22 was purified and its structural properties were examined in several different types of detergent micelles using cross-linking, near and far-UV circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy. PMP22 is highly helical and, in certain detergents, shows evidence of stable tertiary structure. The protein exhibits a strong tendency to dimerize. The 1H-15N TROSY NMR spectrum is well dispersed and contains signals from all regions of the protein. It appears that detergent-solubilized PMP22 is amenable to detailed structural characterization via crystallography or NMR. This work sets the stage for more detailed studies of the structure, folding, and misfolding of wild type and disease-linked mutants in order to unravel the molecular defects underlying peripheral neuropathies.  相似文献   

11.
Bicelles are bilayered discoidal lipid-detergent assemblies which are useful as model membranes. To date, there has been no direct demonstration of functional viability for an integral membrane protein reconstituted into bicelles. In this contribution, the catalytic activity of diacylglycerol kinase (DAGK) was measured following reconstitution into several different bicelle systems and compared to activities measured in traditional mixed micelles and vesicles. For the most optimal bicelle systems tested, DAGK activities approached those observed in mixed micelles or vesicles. For some other bicellar mixtures tested, activities were much lower, with steady-state kinetic data indicating reduced V(max) rather than perturbations in substrate K(m). Catalytically, DAGK showed a strong preference for bicelles containing 3-(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate (CHAPSO) as the detergentcomponent relative to short-chained phosphatidylcholine.DAGK also exhibited a preference for dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine bicelles relative to those of dilauroylphosphatidylcholine.  相似文献   

12.
The exact nature of membrane protein folding and assembly is not understood in detail yet. Addition of SDS to a membrane protein dissolved in mild, non-polar detergent results in formation of mixed micelles and in subsequent denaturation of higher ordered membrane protein structures. The exact nature of this denaturation event is, however, enigmatic, and separation of an individual helix pair in mixed micelles has also not been reported yet. Here we followed unfolding of the human glycophorin A transmembrane helix dimer in mixed micelles by fluorescence spectroscopy. Energy transfer between differently labelled glycophorin A transmembrane helices decreased with increasing SDS mole fractions albeit without modifying the helicity of the peptides. The energetics and kinetics of the dimer dissociation in mixed micelles is analyzed and discussed, and the experimental data demonstrate that mixed micelles can be used as a general method to investigate unfolding of α-helical membrane proteins.  相似文献   

13.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

14.
Self-splicing of the group I IVS from Tetrahymena thermophila rDNA is limited by the time required for the RNA to reach its active conformation. In vitro, folding is slow because the pre-rRNA becomes kinetically trapped in inactive structures. In vivo, splicing is 50 times more rapid, implying that misfolding of the pre-rRNA is corrected. Exon mutations that inhibit self-splicing 100-fold in vitro were fully rescued when the pre-rRNA containing the IVS was expressed in E. coli. In contrast, IVS mutations that cause misfolding were only partially suppressed at 42 degrees C, and doubled the activation energy of splicing. These results suggest that intracellular folding of the pre-rRNA involves metastable intermediates similar to those observed in vitro. Precursors with natural rRNA exons were more active and less cold-sensitive than those with non-rRNA exons. This shows that the rRNA reduces misfolding of the IVS, thereby facilitating splicing of the pre-rRNA in vivo.  相似文献   

15.
In the present study, we defined experimental conditions that allowed the extraction of the integral membrane protein lysophospholipid:acyl-CoA acyltransferase (LAT, EC 2.3.1.23) from membranes while maintaining the full enzyme activity using the nonionic detergent n-octyl glucopyranoside (OGP) and solutions of high ionic strength. We found that the optimal OGP concentration depended on the ionic strength of the solubilization buffer. Fluorescence measurements with 1,6-diphenyl-1,3,5-hexatriene indicated that the critical micellar concentration (CMC) of OGP decreased with increasing salt concentrations. Analogous studies revealed that the zwitterionic detergent Chaps was ineffective in extracting LAT from membranes in the absence of salt, whereas its solubilization efficiency increased with increasing salt concentrations. Detailed lipid analysis of the different protein/lipid/detergent mixed micelles showed that the protein/lipid/OGP mixed micelles were relatively enriched with sphingomyelin (SPM) compared to protein/lipid/Chaps mixed micelles, indicating that the differences in the solubilization efficiency may be due to the ability to extract more SPM from membranes. When the protein/lipid/OGP mixed micelles were dissociated into protein/detergent and lipid/detergent complexes by the addition of increasing Chaps concentrations, one-tenth of the LAT enzyme activity was preserved making the enzyme accessible to protein purification. Analysis by native PAGE revealed that in the presence of excess Chaps a high molecular mass protein complex migrated into the gel which could be photolabeled by 125I-labelled-18-(4'-azido-2'-hydroxybenzoylamino)-oleyl-CoA. This fatty acid analogue has been shown to be a competitive inhibitor of LAT enzyme activity in the dark, and an irreversible inhibitor after photolysis. Therefore, this protein complex is assumed to contain the LAT enzyme.  相似文献   

16.
Angel L. Pey 《Amino acids》2013,45(6):1331-1341
Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.  相似文献   

17.
The folding of membrane proteins was addressed using outer membrane protein porin from the soil bacterium Paracoccus denitrificans (P. den.). IR spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis were used to probe the effect of mutagenesis on the thermal stability of the protein. Secondary structure analysis by amide I ir spectroscopy showed that the wild-type protein was predominantly composed of beta-sheet, which supports the x-ray crystal structure information (A. Hirsch, J. Breed, K. Saxena, O.-M. H. Richter, B. Ludwig, K. Diederichs, and W. Welte, FEBS Letters, 1997, Vol. 404, pp. 208-210). The mutants E81Q, W74C, and E81Q/D148N were shown to have similar secondary structure composition as the wild type. Wild-type protein and the mutants in detergent micelles underwent irreversible denaturation as a result of heating. Transition temperature calculated from the amide I analysis revealed that mutant porins were slightly less stable compared to the wild type. The protein in micelles showed complete monomerization of the trimer above 85 degrees C. In native-like conditions (provided by liposomes), no change was observed in the secondary structure of the protein until 95 degrees C. This is supported by SDS-PAGE as no change in quaternary structure was observed, proving that the proteins are structurally thermostable in liposomes as compared to micelles. Our studies demonstrated that porins resistant to detergents and proteases are highly thermostable as well.  相似文献   

18.
The use of neutron scattering in studying the organisation of detergents in pure micelles, in protein/detergent mixed micelles and in crystals of membrane proteins, is reviewed. Small angle scattering has been used to study the size, shape and composition of pure and mixed protein/detergent micelles as well as the effects of adding small amphiphiles. The technique of contrast variation applied to single crystals is described and its application to the determination of the organization of detergent in single crystals of membrane proteins is discussed. A better understanding of protein/detergent interactions should help in producing crystals of membrane proteins more easily as well as clues to the nature of protein/lipid interactions in vivo.  相似文献   

19.
Although progress has been made in understanding the thermodynamic stability of water-soluble proteins, our understanding of the folding of membrane proteins is at a relatively primitive level. A major obstacle to understanding the folding of membrane proteins is the discovery of systems in which the folding is in thermodynamic equilibrium, and the development of methods to quantitatively assess this equilibrium in micelles and bilayers. Here, we describe the application of disulfide cross-linking to quantitatively measure the thermodynamics of membrane protein association in detergent micelles. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. The 19-46 alpha-helical transmembrane segment of the M2 protein from the influenza A virus was used as a model membrane protein system for this study. Previously it has been shown that transmembrane peptides from this protein specifically self-assemble into tetramers that retain the ability to bind to the drug amantadine. We used thiol-disulfide exchange to quantitatively measure the tetramerization equilibrium of this transmembrane protein in dodecylphosphocholine (DPC) detergent micelles. The association constants obtained agree remarkably well with those derived from analytical ultracentrifugation studies. The experimental method established herein should provide a broadly applicable tool for thermodynamic studies of folding, oligomerization and protein-protein interactions of membrane proteins.  相似文献   

20.
Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su (suppressor) amino acid substitutions that alleviate the tsf phenotype in coat protein (Aramli, L. A., and Teschke, C. M. (1999) J. Biol. Chem. 274, 22217-22224). Unexpectedly, we found that a global su amino acid substitution in tsf coat proteins made aggregation worse and that the tsf phenotype was suppressed by increasing the rate of subunit assembly, thereby decreasing the concentration of aggregation-prone folding intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号