首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aboveground and belowground processes in plants are intimately linked because the resources that must be divided among growth, maintenance, and development of essential structures are finite. To determine how aboveground insect herbivory affects root-system size, morphology, interactions with soil biota, and temporal patterns in the development of root systems, we grew the legume Lespedeza capitata in sunken pots in a restored prairie in south-central Kansas. The plants were manipulated in a factorial experiment that involved reduction of natural herbivory with insecticide and age of plant at harvest (2, 4, or 6 months). Herbivory reduced the aboveground sizes of plants throughout the growing season but did not affect their belowground size or root-system branching ratio. Further, the failure of aboveground insect herbivory to affect density of nitrogen-fixing nodules on L. capitata roots suggests that plants did not shift allocation of carbon to compensate for naturally occurring levels of folivory. We suggest that conservation of root-system structure or low rates of change in root-system structure in response to aboveground insect herbivory may be an adaptive strategy in environments with scarce soil resources, for example near species’ xeric range limits.  相似文献   

2.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

3.
Summary We examined the relationship between flowering phenology, reproductive success (seed production only), and seed head herbivory for 20 similarly sized clones of Erigeron glaucus growing at Bodega Bay Reserve, northern California, USA. Although clones tended to reach peak flowering on the same date, they differed in the proportion of their total flowers produced around that date (flowering synchrony). Clones also differed in the number and density of flower heads presented at any one time to pollinators and herbivores (floral display). Both of these characteristics had consequences for herbivory and plant reproductive success. The proportion of flower heads damaged by insect herbivores was greater for clones that concentrated flowering activity during the main flowering period for the population as a whole (high synchrony) compared to clones that spread flowering out temporally. The primary reason for this result was that clones with low flowering synchrony produced a significant proportion of their flower heads during the fall and therefore, escaped attack by the tephritid fly, Tephritis ovatipennis. Clones with intermediate synchrony had lower seed success (total number of viable seeds produced over the year) than clones with either low or high synchrony. The proportion of flower heads damaged by insect herbivores and number of tephritid flies reared from flower heads were both negatively correlated to floral display while seed head mass and germination rates were positively related to display. Thus, clones which produced dense floral displays were favored both in terms of reduced herbivory and increased successful seed production.  相似文献   

4.
The majority of studies exploring interactions between above- and below-ground biota have been focused on the effects of root-associated organisms on foliar herbivorous insects. This study examined the effects of foliar herbivory by Pieris brassicae L. (Lepidoptera: Pieridae) on the performance of the root herbivore Delia radicum L. (Diptera: Anthomyiidae) and its parasitoid Trybliographa rapae (Westwood) (Hymenoptera: Figitidae), mediated through a shared host plant Brassica nigra L. (Brassicaceae). In the presence of foliar herbivory, the survival of D. radicum and T. rapae decreased significantly by more than 50%. In addition, newly emerged adults of both root herbivores and parasitoids were significantly smaller on plants that had been exposed to foliar herbivory than on control plants. To determine what factor(s) may have accounted for the observed results, we examined the effects of foliar herbivory on root quantity and quality. No significant differences in root biomass were found between plants with and without shoot herbivore damage. Moreover, concentrations of nitrogen in root tissues were also unaffected by shoot damage by P. brassicae larvae. However, higher levels of indole glucosinolates were measured in roots of plants exposed to foliar herbivory, suggesting that the development of the root herbivore and its parasitoid may be, at least partly, negatively affected by increased levels of these allelochemicals in root tissues. Our results show that foliar herbivores can affect the development not only of root-feeding insects but also their natural enemies. We argue that such indirect interactions between above- and below-ground biota may play an important role in the structuring and functioning of communities.  相似文献   

5.
The physiological responses of plants to variable levels of root and shoot herbivory in the field may yield valuable insights regarding potential compensation or tolerance responses for herbivory. In an infestation of Centaurea stoebe (spotted knapweed) located in the Colorado foothills, we measured physiology, biomass, and flower production of individual plants undergoing a natural range of herbivory by the above- and belowground biological control insects, Larinus minutus and Cyphocleonus achates. Over the growing season, net carbon assimilation rate, transpiration, stomatal conductance, and intercellular leaf [CO2] (C i) all decreased, while water use efficiency increased. The decrease in these physiological traits was due to an increase in the intensity of L. minutus damage over time; effects of C. achates root damage to plant physiology, including transpiration were only marginally significant. The effects of these two species on plant physiology were not interactive, and Larinus minutus was found to exert larger negative effects on this invasive plant in terms of plant physiology and potential reproductive output than C. achates. While previous studies have shown C. achates to have significant negative effects on population densities of spotted knapweed, the addition of Larinus minutus to the suite of insects used in biological control of spotted knapweed should facilitate continued or enhanced reduction in densities of this noxious weed.  相似文献   

6.
Responses of aquatic macrophytes to leaf herbivory may differ from those documented for terrestrial plants, in part, because the potential to maximize growth following herbivory may be limited by the stress of being rooted in flooded, anaerobic sediments. Herbivory on aquatic macrophytes may have ecosystem consequences by altering the allocation of nutrients and production of biomass within individual plants and changing the quality and quantity of aboveground biomass available to consumers or decomposers. To test the effects of leaf herbivory on plant growth and production, herbivory of a dominant macrophyte, Nymphaea odorata, by chrysomelid beetles and crambid moths was controlled during a 2-year field experiment. Plants exposed to herbivory maintained, or tended to increase, biomass and aboveground net primary production relative to controls, which resulted in 1.5 times more aboveground primary production entering the detrital pathway of the wetland. In a complementary greenhouse experiment, the effects of simulated leaf herbivory on total plant responses, including biomass and nutrient allocation, were investigated. Plants in the greenhouse responded to moderate herbivory by maintaining aboveground biomass relative to controls, but this response occurred at the expense of belowground growth. Results of these studies suggest that N. odorata may tolerate moderate levels of herbivory by reallocating biomass and resources aboveground, which in turn influences the quantity, quality and fate of organic matter available to herbivores and decomposers.  相似文献   

7.
Greiling  Dunrie A.  Kichanan  Nopporn 《Plant Ecology》2002,161(2):175-183
The controls of seedling emergence and survival determine the potential distribution of adult plants and, thereby, plant community structure. Seed availability, competition from established neighbors, and seedling predation may all limit seedling recruitment. In this field experiment, we followed the emergence and survival of seedlings of three perennial forbs, Achillea millefolium, Hypericum perforatum, and Monarda fistulosa, in old-fields in southeastern Michigan, USA. As adults, all three have aromatic foliage that may deter herbivory, but seedlings may be more susceptible than adults. To establish the relative importance of potential controls on seedling numbers, we manipulated seed availability through seed additions, the influence of competitors by neighbor-removals, and the influence of insect herbivores with insecticide in a fully factorial field experiment. Seed addition and insecticide never affected seedling emergence for any species. Competition from established neighbors controlled seedling emergence for all three species and decreased Achillea survival. Insecticide significantly increased Monarda seedling survival in competition plots, significantly increased Hypericum survival in open plots, and had no effect on Achillea. Notably, insecticide increased survival of the native Monarda fistulosa more than the two introduced species. While neighbors strongly reduced emergence and survival of all three species, herbivores acted on a species-specific basis. These results suggest the differential effects of insects may contribute more to the seedling species composition and abundance patterns than the less-selective influence of competition.  相似文献   

8.
Floral herbivores and pollinators are major determinants of plant reproduction. Because interaction of floral herbivores and pollinators occurs when herbivores attack the flowers in the bud and flower stages and because the compensatory ability of plants is known to differ according to the timing of herbivory, the effects of herbivory may differ according to its timing. In this study, we investigated the effects of floral herbivory at different stages on fruit production and seed/ovule ratio at two sites of large populations of the perennial herb, Iris gracilipes for 2 years. Herbivory at the bud and fruit stages both tended to have negative effects on fruit production, but the former caused more severe damage. On the other hand, herbivory at the flower stage tended not to have negative effects on fruit production because the degree of flower loss was smaller in the flower stage. Although herbivory decreased fruit production, flowers did not compensate for the damage by increasing the seed/ovule ratio because reproduction of I. gracilipes was limited by pollen availability rather than resources. These results indicate that floral herbivory at different stages has different effects on plant reproduction.  相似文献   

9.
Pohl N  Carvallo G  Botto-Mahan C  Medel R 《Oecologia》2006,149(4):648-655
Flower herbivory and pollination have been described as interactive processes that influence each other in their effects on plant reproductive success. Few studies, however, have so far examined their joint effects in natural populations. In this paper we evaluate the influence of flower damage and pollination by the hummingbird Oreotrochilus leucopleurus on the fecundity of the Andean monkey flower Mimulus luteus. We performed a 2×2 factorial experiment, with artificial clipping of lower petals and selective exclusion of the hummingbird as main factors. In spite of the relatively low proportion (27.5%) of the variance in seed production accounted for by the full factorial model, artificial damage and hummingbird exclusion, as well as their interaction, were highly significant, indicating nonadditive effects of factors on plant fecundity. In the presence of hummingbirds, undamaged flowers had a seed production that was 1.7-fold higher than for damaged flowers, suggesting that the effect of flower damage on female reproductive success occurs probably as a consequence of hummingbird discrimination against damaged corollas. This result indicates that the impact of flower herbivory on plant fecundity was contingent on the presence or absence of hummingbirds, suggesting that pollinators may indirectly select for undamaged and probably resistant flower phenotypes. A second interaction effect revealed that undamaged flowers produced 78.5% more seeds in the absence of rather than in the presence of O. leucopleurus, raising the question of the ecological mechanism involved. We suggest that the strong territorial behavior exhibited by the bee Centris nigerrima may confine the foraging activities of the remaining bee species to safe sites within exclosures. Overall, our results provide evidence that hummingbird pollination and flower herbivory have interdependent effects on M. luteus fecundity, which indicates that it will be difficult to predict their ecological and evolutionary consequences unless interactions are analyzed in an integrated form.  相似文献   

10.
The coexistence of multiple species within a trophic level can be regulated by consumer preferences and nutrient supply, but the influence of these factors on the co-occurrence of seagrass species is not well understood. We examined the biomass and density responses of two seagrass species in the Florida Keys Reef Tract to grazing pressure near patch reefs, and evaluated how nutrient enrichment impacted herbivory dynamics. We transplanted Halodule wrightii (shoalgrass) sprigs into caged and uncaged plots in a Thalassia testudinum (turtlegrass) bed near a patch reef. Nutrients (N and P) were added to half of the experimental plots. We recorded changes in seagrass shoot density, and after three months, we measured above- and belowground biomass and tissue nutrient content of both species. Herbivory immediately and strongly impacted H. wrightii. Within six days of transplantation, herbivory reduced the density of uncaged H. wrightii by over 80%, resulting in a decrease in above- and belowground biomass of nearly an order of magnitude. T. testudinum shoot density and belowground biomass were not affected by herbivory, but aboveground biomass and leaf surface area were higher within cages, suggesting that although herbivory influenced both seagrass species, T. testudinum was more resistant to herbivory pressure than H. wrightii. Nutrient addition did not alter herbivory rates or the biomass of either species over the short-term duration of this study. In both species, nutrient addition had little effect on the tissue nutrient content of seagrass leaves, and N:P was near the 30:1 threshold that suggested a balance between N and P. The different impacts of grazing on these two seagrass species suggest that herbivory may be an important regulator of the distribution of multiple seagrass species near herbivore refuges like patch reefs in the Caribbean.  相似文献   

11.
Summary Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.  相似文献   

12.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

13.
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above‐ and belowground herbivores differ substantially in life‐history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above‐ and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root‐feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above‐ and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal‐related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.  相似文献   

14.
Spotted knapweed (Centaurea stoebe) is found in over 3 million ha of rangeland and forests across North America, and evidence supporting the use of biological control as a regional method to reduce infestations and their associated impacts remains inconclusive. Several species of insects have been reported to reduce plant densities in some areas; however, rigorous studies that test combinations of these species and the influence of resource availability are lacking. We examined the singular and combined effects of herbivory by a root weevil (Cyphocleonus achates) and a flower head weevil (Larinus minutus) on the growth and flower production of C. stoebe. We also manipulated soil resource fertility as an additional factor that could explain the outcomes of contradictory biological control herbivore effects on C. stoebe. In a greenhouse study, herbivory by C. achates decreased flower production for plants across all resource environments. In a caged common garden study, the negative effects of herbivory also did not interact with soil nutrient status. However, the presence of plant competition further decreased knapweed growth, and the negative effects of concurrent herbivory by C. achates and L. minutus on plant biomass and flower production were additive. Derived within the context of variable levels of soil nutrient availability and competing vegetation, these results support the cumulative stress hypothesis and the contention that combined above- and belowground herbivory can reduce spotted knapweed densities and reduce the ecological and economic impacts of this species in rangelands of western North America.  相似文献   

15.
Detrimental effects of vines on tree growth in successional environments have been frequently reported. Little is known, however, about the relative importance of below and aboveground competition from vines on tree growth. The objective of this study was to quantify and compare the growth responses of Liquidambar styraciflua saplings to below and/or aboveground competition with the exotic evergreen vine, Lonicera japonica (Japanese honeysuckle), and the native deciduous vine, Parthenocissus quinquefolia (Virginia creeper). Soil trenching and/or vine-trellising were used to control the type of vine competition experienced by trees. Comparisons among untrenched treatments tested for effects of belowground competition. Comparisons among trenched treatments tested for effects of aboveground competition. After two growing seasons, Lonicera japonica had a greater effect on the growth of L. styraciflua than did P. quinquefolia. This effect was largely due to root competition, as canopy competition only had a negative effect on tree growth when it occurred in combination with root competition. Leaf expansion was consistently and similarly affected by all treatments which involved belowground competition.  相似文献   

16.
Insects feeding in conifer cones are difficult to control with nonsystemic insecticides. Newly developed systemic insecticides that can be injected into tree trunks may be a possible way of reducing both insect damage and negative side-effects to the surrounding environment, compared with conventional spraying. Several insecticides that could be injected into tree stems were tested on Picea abies (L.) Karst. In one experiment, insecticides (bifenthrin, deltamethrin, abamectin, and imidacloprid) were injected during flowering; in a second experiment two of these insecticides (abamectin and imidacloprid) were injected 1 yr before the expected flowering. In the second experiment insecticide treatment was also combined with treatments with the flower stimulating hormone, gibberellin (GA(4/7)). The only insecticide that reduced damage was abamectin, both after injection during flowering and after injection 1 yr before the expected flowering. Injections with GA(4/7) increased flowering and were as efficient as the conventional application method of drilling but abamectin was not effective in combination with the drilling method. There was no negative effect of the insecticide injections on seed quality. The injections were ineffective against the seed chalcid Megastigmus strobilobius (Ratzeburg), which was found to have an unexpected, negative effect on seed quality. Our results suggest that it may be possible to reduce damage from certain insect species, and to increase flowering by injecting abamectin and GA(4/7) in the year before a cone crop.  相似文献   

17.
Creeping thistle or Canada thistle, Cirsium arvense (L.) Scop., is considered one of the world's worst weeds and the third most important weed in Europe. Biological control of this indigenous weed in Europe by use of native agents may provide a low-cost alternative to use of chemical or mechanical control measures and contribute to a more sustainable weed management. We investigated the potential of a shoot-base boring weevil, Apion onopordi Kirby (Coleoptera: Apionidae), for biological weed control, in the presence or absence of plant competition by three grass species. Infestation of thistle shoots by A. onopordi at natural infestation levels reduced above- and belowground plant performance after 2 years. Plant competition at natural levels had an overall greater effect than that of herbivory, significantly reducing both above- and belowground thistle performance in both years, thereby slowing the propagation of the weed. Weevil infestation and grass competition had a synergistic effect on C. arvense growth; the combined effects of the two factors was greater than the sum of both single-factor effects. The experiment revealed that A. onopordi promotes systemic infections of the rust fungus Puccinia punctiformis (Str.) Röhl in the year following weevil infestation. Systemically infected thistle shoots died before the end of the growing season. Although the direct effect of A. onopordi may not be sufficient to control creeping thistle, the synergistic interaction with plant competition and the indirect effect via promotion of systemic rust infections makes A. onopordi a promising agent for the biological control of this weed.  相似文献   

18.
Maestre FT  Reynolds JF 《Oecologia》2007,151(3):512-520
While it is well-established that the spatial distribution of soil nutrients (soil heterogeneity) influences the competitive ability and survival of individual plants, as well as the productivity of plant communities, there is a paucity of data on how soil heterogeneity and global change drivers interact to affect plant performance and ecosystem functioning. To evaluate the effects of elevated CO2, soil heterogeneity and diversity (species richness and composition) on productivity, patterns of biomass allocation and root foraging precision, we conducted an experiment with grassland assemblages formed by monocultures, two- and three-species mixtures of Lolium perenne, Plantago lanceolata and Holcus lanatus. The experiment lasted for 90 days, and was conducted on microcosms built out of PVC pipe (length 38 cm, internal diameter 10 cm). When nutrients were heterogeneously supplied (in discrete patches), assemblages exhibited precise root foraging patterns, and had higher total, above- and belowground biomass. Greater aboveground biomass was observed under elevated CO2. Species composition affected the below:aboveground biomass ratio and interacted with nutrient heterogeneity to determine belowground and total biomass. Species richness had no significant effects, and did not interact with either CO2 or nutrient heterogeneity. Under elevated CO2 conditions, the two- and three-species mixtures showed a clear trend towards underyielding. Our results show that differences among composition levels were dependent on soil heterogeneity, highlighting its potential role in modulating diversity–productivity relationships. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible to authorized users.  相似文献   

19.
Plants are frequently attacked by both above- and belowground arthropod herbivores. Nevertheless, studies rarely consider root and shoot herbivory in conjunction. Here we provide evidence that the root-feeding insect Agriotes lineatus reduces the performance of the foliage feeding insect Spodoptera exigua on cotton plants. In a bioassay, S. exigua larvae were allowed to feed on either undamaged plants, or on plants that had previously been exposed to root herbivory, foliar herbivory, or a combination of both. Previous root herbivory reduced the relative growth rates as well as the food consumption of S. exigua by more than 50% in comparison to larvae feeding on the undamaged controls. We found no effects in the opposite direction, as aboveground herbivory by S. exigua did not affect the relative growth rates of root-feeding A. lineatus . Remarkably, neither did the treatment with foliar herbivory affect the food consumption and relative growth rate of S. exigua in the bioassay. However, this treatment did result in a significant change in the distribution of S. exigua feeding. Plants that had been pre-exposed to foliar herbivory suffered significantly less damage on their young terminal leaves. While plant growth and foliar nitrogen levels were not affected by any of the treatments, we did find significant differences between treatments with respect to the level and distribution of plant defensive chemicals (terpenoids). Exposure to root herbivores resulted in an increase in terpenoid levels in both roots as well as in mature and immature foliage. Foliar damage, on the other hand, resulted in high terpenoid levels in young, terminal leaves only. Our results show that root-feeding herbivores may change the level and distribution of plant defenses aboveground. Our data suggest that the reported interactions between below- and aboveground insect herbivores are mediated by induced changes in plant secondary chemistry.  相似文献   

20.
Maize (Zea mays) production, which is of global agro‐economic importance, is largely limited by herbivore pests, pathogens and environmental conditions, such as drought. Zealexins and kauralexins belong to two recently identified families of acidic terpenoid phytoalexins in maize that mediate defence against both pathogen and insect attacks in aboveground tissues. However, little is known about their function in belowground organs and their potential to counter abiotic stress. In this study, we show that zealexins and kauralexins accumulate in roots in response to both biotic and abiotic stress including, Diabrotica balteata herbivory, Fusarium verticillioides infection, drought and high salinity. We find that the quantity of drought‐induced phytoalexins is positively correlated with the root‐to‐shoot ratio of different maize varieties, and further demonstrate that mutant an2 plants deficient in kauralexin production are more sensitive to drought. The induction of phytoalexins in response to drought is root specific and does not influence phytoalexin levels aboveground; however, the accumulation of phytoalexins in one tissue may influence the induction capacity of other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号