首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of albino rats to continuous light of low intensity (350–700 lux) for 4 months produces massive degeneration of the photoreceptor segments and cell bodies of the outer nuclear layer of the retina. Only a few heterochromatic, receptor cell nuclei remain, and no photoreceptor segments are present. On the other hand, the inner layers of these retinas remain morphologically intact. The inner nuclear layer of the normal rat retina contains a group of amacrine cells which contain the putative neurotransmitter, dopamine (DA). Short term exposure to light (30 or 60 min) markedly stimulates the rate of DA turnover in these cells in normal, previously dark-adapted rats. Such enhancement of the rate of neurotransmitter turnover in the brain has been correlated with an increase in nerve impulse activity. The present study was undertaken to determine if the dopaminergic amacrine cells of the inner nuclear layer were still responsive to light in the retinas of rats whose photoreceptors were previously destroyed by long term exposure to continuous illumination. One week before sacrifice, the animals which had been housed in continuous light for 4 months were returned to normal 14 hr light: 10 hr dark lighting conditions. At the end of this time they and a group of control rats which had been housed in cyclic lighting conditions for the entire 4 months were dark adapted for approximately 15 hr. Then the rate of retinal DA turnover was estimated from the depletion of DA following inhibition of DA synthesis by α methyl para-tyrosine. The turnover of DA in the dark-adapted retinas of the control rats and of experimental rats with photoreceptor degeneration was dramatically enhanced 2–4 fold by short term exposure (up to 1 hr) to light. Since rats are nocturnal and avoid light, we tested the light aversion of another group of rats which had been exposed to light for 4 months and then returned to cyclic lighting conditions for one week. These rats and control animals which had been maintained in cyclic lighting conditions for 4 months both chose the dark side of a light-dark box over 80% of the time. This behavior of the rats with retinal degeneration was taken as a crude indication of their continued ability to detect light. The light-induced increase in DA activity in retinas with photoreceptor degeneration may play a role in the continued ability of these rats to perceive light.  相似文献   

2.
Exposure of dark-adapted rats to light enhances the activity of the retinal dopamine (DA) neurons. The purpose of this study was to determine if the response of these neurons to light varies with different intensities of light. The accumulation of dihydroxyphenylalanine (DOPA) after inhibition of L-aromatic amino acid decarboxylase with NSD-1015 was used as a measure of the in vivo activity of these DA neurons. Retinal DOPA accumulation was significantly increased in dark-adapted rats that had been exposed to light for only 5 min. The activation of the retinal DA neurons by cool white fluorescent lighting was dependent upon the light intensity. Light intensities of 0.1 and 0.5 lux did not stimulate the retinal DA neurons. There was a significant, but submaximal, activation of the neurons by 5.0 lux, and intensities of 32.2 lux or more maximally stimulated the neurons. The method involving liquid chromatography (LC) with electrochemistry (EC) which was used in these experiments to measure retinal DOPA and DA concentrations is also described in detail.  相似文献   

3.
Dopamine (DA)-containing neurons of the rat retina are apparently activated transsynaptically by photic stimulation. Exposure of dark-adapted rats to light increases retinal DA biosynthesis and metabolism. Associated with the light-evoked increase of DA biosynthesis is a rapid activation of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis. The activation of TH is characterized by an increased affinity of the enzyme for the pteridine cofactor. Because TH in dark-adapted retinas is apparently not saturated with cofactor, the light-evoked increase of affinity is probably responsible for the observed stimulation of DA biosynthesis. Cyclic AMP (cAMP)-dependent protein phosphorylation in vitro activates TH extracted from dark-adapted retinas, and phosphorylation-induced TH activation is very similar and not additive with light-evoked activation of the enzyme. Incubation of viable cell suspensions of dissociated retinas with 8-bromo cAMP also activates TH, which indicates the availability of sufficient cAMP-dependent protein kinase in the proper subcellular compartment to regulate the enzyme in situ. The DA-containing neurons of the rat retina are tonically inhibited in darkness, and evidence is presented that this tonic inhibition involves direct synaptic input to the DA neurons from gamma-aminobutyric acid-containing amacrine cells. The DA-containing neurons are also subject to feedback inhibition through DA receptors, and to modulation by alpha 2-adrenergic receptors.  相似文献   

4.
W W Morgan  C W Kamp 《Life sciences》1983,33(14):1419-1426
Male Sprague-Dawley rats were divided into 2 groups. One group (experimental) was housed for 6 months in continuous low intensity light while the other (control) was exposed to standard 14 hr light: 10 hr dark cyclic lighting conditions for the entire time. For both the control and experimental groups the light intensity was 350-700 Lux. After 6 months, the experimental rats were returned to cyclic lighting. At one week and again at 2 months the light aversion behavior of all rats was tested in a light/dark test box. The experimental rats chose the dark side of the box only 58% of the time while control animals preferred the dark 79% of the time. Since rats normally are nocturnal and avoid light, these results suggest that the experimental rats may have permanently lost a functionally significant portion of the ability to detect light. After the second behavioral test all rats were dark adapted and 15 hr later the effect of short term (30 or 60 min) exposure to light on DA turnover in one retina from each rat was assessed. The other retina from each rat was fixed and examined histologically. Light significantly enhanced the alpha methyl-p-tyrosine induced decline of DA in the retinas of the control rats but exerted no similar effect in the experimental animals. The retinal DA contents of the experimental rats were substantially depleted. Histological examination suggested that the outer nuclear layers of the experimental retinas were more severely damaged than those from rats exposed to continuous light for 4 months but still contained a few pycnotic photoreceptor nuclei and nearly normal looking inner neural layers. These results indicate that extended exposure to light eventually abolishes light aversion behavior and at this time there is also a loss of the photosensitivity of the dopaminergic amacrine neurons.  相似文献   

5.
Biphasic electrical field stimulation (0.5-5 Hz, 2 ms, 25 V, 3 min) and high K+ (10-30 mM, 5 min) released endogenous 3,4-dihydroxyphenylalanine (DOPA) from superfused rat striatal slices. Characteristics of the DOPA release were compared with those of 3,4-dihydroxyphenylethylamine (dopamine, DA). Electrical stimulation at 2 Hz evoked DOPA and DA over similar time courses. alpha-Methyl-p-tyrosine (0.2 mM) markedly reduced release of DOPA but not of DA. Maximal release (0.3 pmol) of DOPA was obtained at 2 Hz and at 15 mM K+. The impulse-evoked release of DOPA and DA was completely tetrodotoxin (0.3 microM) sensitive and Ca2+ dependent and the 15 mM K+-evoked release was also Ca2+ dependent. On L-[3,5-3H]tyrosine (1 microM) superfusion, high K+ (15 and 60 mM) released DOPA and DA together with concentration-dependent decreases in tyrosine 3-monooxygenase (EC 1.14.16.2) activity as indicated by [3H]H2O formation, followed by concentration-dependent increases after DOPA and DA release ended. These findings suggest that striatal DOPA is released by a Ca2+-dependent excitation-secretion coupling process similar to that involved in transmitter release.  相似文献   

6.
Using microdialysis and HPLC, characteristics of the release of endogenous 3,4-dihydroxyphenylalanine (DOPA) from striatum in conscious rats were studied in comparison with those of 3,4-dihydroxyphenylethylamine (dopamine; DA). Purified L-aromatic amino acid decarboxylase (AADC) converted a putative peak of DOPA to DA. The retention time of DOPA differed from that of DA and major metabolites of DA and norepinephrine. The DOPA peak of dialysates comigrated with that of authentic DOPA when the pH of the HPLC buffer was modified. The ratio of the basal release of DOPA:DA was 1:2. 3-Hydroxybenzylhydrazine (NSD-1015; 100 mg/kg, i.p.), an AADC inhibitor, markedly increased the basal release of DOPA but produced no effect on DA. The basal release of DOPA was markedly decreased by alpha-methyl-p-tyrosine (200 mg/kg, i.p.), substantially tetrodotoxin (1 microM) sensitive, and Ca2+ (removal plus 12.5 mM Mg2+ addition) dependent. Fifty millimolar K+ released DOPA and this release was also Ca2+ dependent. These characteristics of the basal and evoked release of DOPA were similar to those of DA. The ratio of the evoked release of DOPA:DA was 1:3. These results indicate that DOPA is released under physiological conditions and by K(+)-induced depolarization in a manner similar to that for transmitter DA from striatum in freely moving rats.  相似文献   

7.
Acute oral administration of ethanol (3.2g/kg) to normal rats increased DOPAC levels and DOPA formation in the caudate nucleus but had no effect in the substantia nigra and frontal cortex and failed to modify dopamine (DA) levels in any of the above brain areas. Complete tolerance to the stimulant effect on DOPA formation developed after chronic ethanol administration (3.2g daily for 60 days). In chronically treated rats, 24 hrs after ethanol withdrawal, DA levels in the frontal cortex were 60% higher than in controls and were unchanged in the substantia nigra and caudate nucleus as were DOPAC levels in all areas studied. At this time, the administration of ethanol caused a long-lasting depletion of DA and a parallel increase of DOPAC levels in all areas analyzed. The results indicate that acute and chronic ethanol release DA stores but, in the acute condition, DA depletion is prevented by increased synthesis.  相似文献   

8.
Abstract: Light stimulates tyrosine hydroxylase activity and dopamine (DA) turnover in the dark-adapted rat retina in vivo . The DA neurons are located in the amacrine cell layer and form numerous connections with other cells in this layer. Conceivably, alterations in neurotransmission in these other cells could influence the light-responding parameters of the DA neurons. Evidence presented in this paper shows that in vivo pharmacologic manipulation of the GABA system modifies the light-induced change in DA turnover. The decline in DA content following inhibition of tyrosine hydroxylase by α-methyl-p-tyrosine (αMPT, 250 mg/kg, i.p.) was used to estimate DA turnover. The decline in DA content in retinas of the μMPT-treated rats was significantly enhanced by light exposure for 30 or 60 min. Two doses of the potent GABA agonist muscimol (13.2 or 26.4 μmol/kg, i.v., cumulative) significantly inhibited the light-induced increase in DA turnover (p <.001). This action was selective for GABA because the GABA antagonist picrotoxinin (1.88 mg/kg, i.v., cumulative) reversed the muscimol-mediated blockade of the light-induced stimulation. In fact, DA turnover in the presence of light, muscimol, and picrotoxinin was not different from DA turnover in light alone. These data suggest that there is either a direct or indirect GABAergic input to the DA system of the rat retina. Current studies are aimed at clarifying the physiological role, if any, that this input plays in the normal light response of the retinal DA system.  相似文献   

9.
The activities of periventricular-hypophysial dopaminergic (DA) neurons were compared in male and female rats by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine [DOPA] after inhibition of L-aromatic amino acid decarboxylase) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid [DOPAC]) in terminals of these neurons in the intermediate lobe of the pituitary. For comparison, the synthesis and metabolism of dopamine in the neural lobe of the pituitary and median eminence were also determined. The concentrations of DOPAC and accumulation of DOPA were higher in females than in males in both the intermediate lobe and median eminence, revealing a sexual difference in the basal activity of periventricular-hypophysial and tuberoinfundibular DA neurons. In contrast, there were no differences between male and female rats in activity of DA neurons terminating in the neural lobe. One week following gonadectomy, DOPA accumulation in the median eminence was decreased in females and increased in males, but remained unchanged in the intermediate lobe. These results indicate that sexual differences in the activity of periventricular-hypophysial DA neurons terminating in the intermediate lobe are not dependent upon the presence of circulating gonadal steroids, and in this respect, these neurons differ from tuberoinfundibular DA neurons.  相似文献   

10.
DOPA decarboxylase (DDC; aromatic-l-amino acid decarboxylase; EC 4.1.1.28) is absent in retinas from 6-day-old chicken embryos (E6) but is expressed in retina of E8 embryos, in the presumptive outer plexiform layer. Thereafter, DDC appears in cell bodies of presumptive amacrine cells. The dopamine (DA) content of E9/10 and E15/16 retinas, pre-incubated with l-DOPA for 1 h, increased 250- and 600-fold, respectively, showing that DDC is active since early in development. Intercellular communication, measured by endogenous cyclic AMP accumulation, was observed when retinas from E9/10 to E15/16 were pre-incubated for 1 h with 1 mm l-DOPA, washed and followed by incubation in the presence of 0.5 mm 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor. Cyclic AMP accumulation was prevented when pre-incubation with l-DOPA was carried out in the presence of carbidopa. Moreover, the accumulation of cyclic AMP was inhibited by SCH 23390 (2 micro m). The incubation of retinas in medium previously conditioned by retina-pigmented epithelium (RPE) also increased its cyclic AMP content with the characteristics described for l-DOPA. Our results show that dopaminergic communication takes place in the embryonic retina, before tyrosine hydroxylase expression, provided l-DOPA is supplied to the tissue. It also shows that RPE is a potential source of l-DOPA early in development.  相似文献   

11.
We have examined the effects of changes in extracellular ionic composition on cone and retinal pigment epithelium (RPE) retinomotor movements in cultured isolated teleost retinas. In vivo, the myoid portion of teleost cones contracts in the light and elongates in the dark; RPE pigment disperses in the light and aggregates in the dark. In vitro, cones of dark-adapted (DA) retinas cultured in constant darkness contracted spontaneously to their light-adapted (LA) positions if the culture medium contained greater than or equal to 10(-3)M Cao++. DA cones retained their long DA positions in a medium containing less than or equal to 10(-6)M Cao++. Low [Ca++]o (10(-5)-10(-7)M) also permitted darkness to induce cone elongation and RPE pigment aggregation. Light produced cone contraction even in the absence of Cao++, but the extent of contraction was reduced if [Ca++]o was less than 10(-3) M. Thus, full contraction appeared to require the presence of external Ca++. High [K+]o (greater than or equal to 27 mM) inhibited both light-induced and light-independent Ca++-induced cone contraction. However, low [Na+]o (3.5 mM) in the presence of less than or equal to 10(-6)M Cao++ did not mimic light onset by inducing cone contraction in the dark. High [K+]o also promoted dark-adaptive cone and RPE movements in LA retinas cultured in the light. All results obtained in high [K+]o were similar to those observed when DA or LA retinas were exposed to treatments that elevate cytoplasmic cyclic 3',5'-adenosine monophosphate (cAMP) content.  相似文献   

12.
Summary We have explored the role of excitatory amino acids in the increased dopamine (DA) release that occurs in the neostriatum during stress-induced behavioral activation. Studies were performed in awake, freely moving rats, usingin vivo microdialysis. Extracellular DA was used as a measure of DA release; extracellular 3,4-dihydroxyphenylalanine (DOPA) after inhibition of DOPA decarboxylase provided a measure of apparent DA synthesis. Mild stress increased the synthesis and release of DA in striatum. DA synthesis and release also were enhanced by the intra-striatal infusion of N-methyl-D-aspartate (NMDA), an agonist at NMDA receptors, and kainic acid, an agonist at the DL-a-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA)/kainate site. Stress-induced increase in DAsynthesis was attenuated by co-infusion of 2-amino-5-phosphonovalerate (APV) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and AMPA/kainate receptors, respectively. In contrast, intrastriatal APV, CNQX, or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) did not block the stress-induced increase in DArelease. Stress-induced increase in DA release was, however, blocked by administration of tetrodotoxin along the nigrostriatal DA projection. It also was attenuated when APV was infused into substantia nigra. Thus, glutamate may act via ionotropic receptors within striatum to regulate DA synthesis, whereas glutamate may influence DA release via an action on receptors in substantia nigra. However, our method for monitoring DA synthesis lowers extracellular DA and this may permit the appearance of an intra-striatal glutamatergic influence by reducing a local inhibitory influence of DA. If so, under conditions of low extracellular DA glutamate may influence DA release, as well as DA synthesis, by an intrastriatal action. Such conditions might occur during prolonged severe stress and/or DA neuron degeneration. These results may have implications for the impact of glutamate antagonists on the ability of patients with Parkinson's disease to tolerate stress.  相似文献   

13.
The effects of histamine on prolactin secretion and the activity of tuberoinfundibular dopaminergic (DA) neurons were examined in male rats. Tuberoinfundibular DA neuronal activity was estimated in situ by measuring the metabolism [concentration of 3,4-dihydroxyphenylacetic acid (DOPAC)] and synthesis [accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor] of dopamine in the median eminence. Intracerebroventricular (icv) injection of histamine produced a dose- and time-dependent increase in plasma prolactin levels but had no effect on DOPA accumulation or DOPAC concentrations in the median eminence. These results indicate that the stimulation of prolactin secretion following icv histamine is not mediated by an inhibition of tuberoinfundibular DA neurons.  相似文献   

14.
Abstract: Basal levels of endogenous 3,4-dihydroxyphenylalanine (DOPA) were detected by HPLC coupled with coulometric detection in dialysates from freely moving rats implanted 48–72 h earlier with transversal dialysis fibers in the dorsal caudate. Because decarboxylase inhibitor is absent in the Ringer's solution, this method allows monitoring of basal output of dopamine (DA) and 3,4-dihydroxyphenylacetic acid, as well as DOPA. Extracellular DOPA concentrations were reduced by the tyrosine hydroxylase inhibitor α-methylparatyrosine (200 mg/kg, i.p.) and by the dopaminergic agonist apomorphine (0.25 mg/kg, s.c.). The dopaminergic antagonist haloperidol (0.2 mg/kg, s.c.) stimulated DOPA output by about 60% over basal values. γ-Butyrolactone, at doses of 700 mg/kg, i.p., which are known to block dopaminergic neuronal firing and which reduce DA release, stimulated DOPA output maximally by 130% over basal values. Tetrodotoxin, which blocks DA release by blocking voltage-dependent Na+ channels, increased DOPA output maximally by 100% over basal values. The results indicate that basal DOPA can be detected and monitored in the extracellular fluid of the caudate of freely moving rats by transcerebral dialysis and can be taken as a dynamic index of DA synthesis in pharmacological conditions.  相似文献   

15.
A Sved  J Fernstrom 《Life sciences》1981,29(7):743-748
The administration of tyrosine (200 mg/kg) to adult male rats significantly enhanced the increase in striatal dopamine (DA) levels that followed gamma-butyrolactone (GBL) injection. Tyrosine injection also stimulated the rise in striatal dihydroxyphenylalanine (DOPA) accumulation after injection of m-hydroxybenzylhydrazine dihydrochloride (NSD-1015) that resulted from GBL administration. These results identify a new paradigm in which an increase in the brain levels of tyrosine enhances the rate of formation of dopamine. In addition, They support the notion that tyrosine hydroxylase must be “activated” in order for tyrosine availability to influence DA synthesis.  相似文献   

16.
Freeze-dried sections were prepared from retinas of frogs which were dark-adapted or exposed to varying periods of light. Samples of the discrete layers were dissected, weighed, and analyzed for energy metabolites, guanylate compounds, and the enzyme guanylate cyclase. ATP and P-creatine were measured in both dark- and light-adapted retinas. There was a gradient in ATP and P-creatine levels in dark-adapted retinas, with the lower concentrations in the photoreceptors, and increasing concentrations in the inner retina. After light adaptation, concentrations increased, an observation which supports the concept that transmitter release occurs in the dark and ceases in the light. The sum of GTP plus GDP, GDP, and cyclic GMP were analyzed in dark-adapted retinas and after exposure to 2 min or 2 h of room light. GDP was rather uniformly distributed in the retinal layers, was increased by 2 min of light in all layers but the outer nuclear, and remained elevated at 2 h in the inner retina. GTP values showed a marked localization in the outer nuclear layer, which increased after 2 min or 2 h of illumination; in all other layers GTP was decreased by light. Cyclic GMP in the dark was highest in the photoreceptor cells, decreasing to one-third after 2 min of light; there were significant increases in the outer plexiform and inner nuclear layers at this time. Cyclic GMP remained low in the photoreceptor cells even after 2 h of light, while the inner layers returned to dark values. Guanylate cyclase, like cyclic GMP, was largely confined to the photoreceptor cells and showed a maximal increase after 2 min of light exposure.  相似文献   

17.
Metabolism of Catecholamines in the Developing Spinal Cord of the Rat   总被引:3,自引:3,他引:0  
The metabolism of 3,4-dihydroxyphenylethylamine (DA, dopamine) and norepinephrine (NE) both normally, and after the administration of levo-3,4-dihydroxyphenylalanine (L-DOPA), has been studied in several regions of the developing spinal cord of the rat from fetal day (FD) 16 to the young adult stage. During late fetal (from FD 16) and most of neonatal life [to neonatal day (ND) 20], dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were either just detectable or present in very low concentration in all regions in the untreated developing rat. However, the developing spinal cord possesses an enormous capacity to metabolize the large amounts of DA synthesized from injected L-DOPA. At the end of 1 h after 100 mg/kg i.p. of L-DOPA, DOPAC and HVA are 54 +/- 14 (n = 5) and 16 +/- 5 (n = 5) nmol/g, respectively, in the thoracic zona intermedia in the 12-h-old (ND 0.5) rat. This metabolic capability is already highly developed as early as FD 16, peaks during the first half of neonatal life (ND 4 for DOPAC, and ND 15 for HVA), and is considerably reduced toward the end of neonatal life (approximately ND 28) and in the young adult. Control experiments suggest that a substantial part of this synthesis (from L-DOPA) and metabolism of DA occurs in elements other than the descending monoaminergic nerve fibers. By comparison, the synthesis and metabolism of NE develop more slowly, peak in the latter half of neonatal life, and then decline to the level found in the young adult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) and m-chlorophenylpiperazine (CPP), two 5-hydroxytryptamine (5-HT, serotonin) agonists, on the accumulation of 3,4-dihydroxyphenylalanine (DOPA] were studied in the striatum of rats treated with gamma-butyrolactone (GBL). Unlike 2 mg/kg i.p. apomorphine, neither 5 mg/kg i.p. 5-MeO-DMT nor 2.5 mg/kg i.p. CPP significantly reduced the GBL-induced increase in DOPA accumulation in the striatum. 5-MeO-DMT and CPP significantly reduced DOPA accumulation in animals that had received the aromatic amino acid decarboxylase inhibitor Ro 4-4602 but not GBL. 5-HT (10 micrograms in 0.5 microliter) injected in the substantia nigra, pars compacta, like GBL, significantly increased Ro 4-4602-induced accumulation of DOPA in the striatum. The data indicate that 5-HT agonists can reduce 3,4-dihydroxyphenylethylamine (DA, dopamine) synthesis in the striatum of rats only when the impulse flow of DA neurons is intact. An indirect effect through mechanisms controlling DA synthesis in the striatum, for instance cholinergic and GABA-ergic neurons, is suggested.  相似文献   

19.
The influence of neonatal thyroidectomy (Tx) on developmental changes in dopamine (DA), acetylcholine (ACh), and acetylcholinesterase (AChE) was studied in the whole brain of rats. In control animals, brain levels of ACh gradually increased and attained adult values at the 70th day. In contrast, AChE activity showed a rapid increase between the 7th and 30th days. Levels of DA were low during the early postnatal life but markedly increased to reach adult values of 1.47 mug/g at the 30th day, after which no further enhancement was noted. Neonatal Tx interfered with the normal growth of the animals, decreased brain weights, and markedly influenced the developmental pattern of both DA and ACh in the brain. The concentration of DA in 30-day-old hypothyroid rats was 46% of the control values. In contrast, brain ACh levels in Tx rats were consistently above those seen in controls, being significantly higher, by 49 and 64%, at 15 and 30 days, respectively. Activity of AChE in brains of hypothyroid animals was not significantly different from that in controls. Treatment of Tx rats with thyroid hormone virtually restored the levels of DA and ACh to values in control animals.  相似文献   

20.
Rho-1C5, a monoclonal antibody sensitive to phosphorylation of rhodopsin, bound to the retinal photoreceptor cell body region of dark-adapted but not light-adapted 8 to 13-day-old-rats. There was no cell body labeling visible either before or after this time, although the photoreceptor outer segments were labeled at all times from postnatal day 5 (PN5) onwards, in both light and dark adapted retinas. However, opsin was detectable in the photoreceptor cell body region from birth onwards using another rhodopsin antibody binding to a site unaffected by phosphorylation. Competitive inhibition radioimmunoassays also indicated light-dependent differences in Rho-1C5 binding at PN8 and adult. Biochemical studies showed light-dependent phosphorylation of rhodopsin at PN8, PN13 (just after eye opening) and adult. These data indicate that rhodopsin can be phosphorylated in a light-regulated manner early in development before eye opening and imply that photoactive chromophores can attach to opsin in the cell body as well as the outer segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号