首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein egress from the endoplasmic reticulum (ER) is driven by a conserved cytoplasmic coat complex called the COPII coat. The COPII coat complex contains an inner shell (Sec23/Sec24) that sorts cargo into ER-derived vesicles and an outer cage (Sec13/Sec31) that leads to coat polymerization. Once released from the ER, vesicles must tether to and fuse with the target membrane to deliver their protein and lipid contents. This delivery step also depends on the COPII coat, with coat proteins binding directly to tethering and regulatory factors. Recent findings have yielded new insight into how COPII-mediated vesicle traffic is regulated. Here we discuss the molecular basis of COPII-mediated ER–Golgi traffic, focusing on the surprising complexity of how ER-derived vesicles form, package diverse cargoes, and correctly target these cargoes to their destination.The port of entry into the secretory pathway is the endoplasmic reticulum (ER). Approximately one-third of the eukaryotic proteome traffics from this multifunctional organelle (Huh et al. 2003). This diverse set of cargo is translocated into the ER, folded, and modified before it travels to the Golgi, where further modifications occur. From the Golgi, cargo is sorted to other subcellular compartments to perform a variety of cellular functions. The highly conserved machinery required for these transport events was initially identified through genetic screens in the yeast Saccharomyces cerevisiae, and insights into the function of this machinery were provided through the use of in vitro transport assays. Advances in microscopy, in particular, the use of GFP fusion proteins and live cell imaging, have also played a critical role in understanding the dynamics of membrane traffic. In this article, we describe the mechanistic advances that have helped us to understand how diverse cargo correctly traffics from the ER to the Golgi complex in lower and higher eukaryotes. Even though these mechanisms are largely conserved, they are more complex at the molecular and organizational levels in metazoans.  相似文献   

2.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

3.
Carbon tetrachloride (CCl4) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl4 inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl4 on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl4 suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl4 treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl4-induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl4 inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.  相似文献   

4.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles.  相似文献   

5.
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.  相似文献   

6.
Selective cargo capture into ER-derived vesicles is driven by the Sec24p subunit of the COPII coat, which contains at least three independent cargo-binding sites. One of these, the "A-site," interacts with a NPF motif found on the SNARE, Sed5p. We have characterized the Sec24p-Sed5p interaction through mutation of the putative ER export motifs of Sed5p and the cargo-binding A-site of Sec24p. Mutational analysis of Sed5p suggests that the NPF motif is the dominant ER export signal. Mutation of the NPF binding pocket on Sec24p led to a dramatic reduction in the capture of Sed5p into COPII vesicles, whereas packaging of other ER-Golgi SNAREs was normal. Of all the cargoes tested, only Sed5p was depleted in vesicles made with Sec24p A-site mutants. Surprisingly, vesicles generated with the mutant Sec24p were unable to fuse with the Golgi apparatus. This inability to fuse was not the result of the lack of Sed5p, because vesicles specifically depleted of Sed5p generated by antibody inhibition targeted and fused normally. We propose that the A-site of Sec24p is a multipurpose cargo-binding site that must recognize additional unidentified cargo proteins, at least one of which is essential at a late stage of vesicle fusion.  相似文献   

7.
Transport of secretory proteins out of the endoplasmic reticulum (ER) is mediated by vesicles generated by the COPII coat complex. In order to understand how cargo molecules are selected by this cytoplasmic coat, we investigated the functional role of the Sec24p homolog, Lst1p. We show that Lst1p can function as a COPII subunit independently of Sec24p on native ER membranes and on synthetic liposomes. However, vesicles generated with Lst1p in the absence of Sec24p are deficient in a distinct subset of cargo molecules, including the SNAREs, Bet1p, Bos1p and Sec22p. Consistent with the absence of any SNAREs, these vesicles are unable to fuse with Golgi membranes. Furthermore, unlike Sec24p, Lst1p fails to bind to Bet1p in vitro, indicating a direct correlation between cargo binding and recruitment into vesicles. Our data suggest that the principle role of Sec24p is to discriminate cargo molecules for incorporation into COPII vesicles.  相似文献   

8.
We have characterized the mechanisms of cargo selection into ER-derived vesicles by the COPII subunit Sec24p. We identified a site on Sec24p that recognizes the v-SNARE Bet1p and show that packaging of a number of cargo molecules is disrupted when mutations are introduced at this site. Surprisingly, cargo proteins affected by these mutations did not share a single common sorting signal, nor were proteins sharing a putative class of signal affected to the same degree. We show that the same site is conserved as a cargo-interaction domain on the Sec24p homolog Lst1p, which only packages a subset of the cargoes recognized by Sec24p. Finally, we identified an additional mutation that defines another cargo binding domain on Sec24p, which specifically interacts with the SNARE Sec22p. Together, our data support a model whereby Sec24p proteins contain multiple independent cargo binding domains that allow for recognition of a diverse set of sorting signals.  相似文献   

9.
To analyze the role of coat protein type II (COPII) coat components and targeting and fusion factors in selective export from the endoplasmic reticulum (ER) and transport to the Golgi, we have developed three novel, stage-specific assays. Cargo selection can be measured using a "stage 1 cargo capture assay," in which ER microsomes are incubated in the presence of glutathione S-transferase (GST)-tagged Sar1 GTPase and purified Sec23/24 components to follow recruitment of biosynthetic cargo to prebudding complexes. This cargo recruitment assay can be followed by two sequential assays that measure separately the budding of COPII-coated vesicles from ER microsomes (stage 2) and, finally, delivery of cargo-containing vesicles to the Golgi (stage 3). We show how these assays provide a means to identify the snap receptor (SNARE) protein rBet1 as an essential component that is not required for vesicle formation, but is required for vesicle targeting and fusion during ER-to-Golgi transport. In general, these assays provide an approach to characterize the biochemical basis for the recruitment of a wide variety of biosynthetic cargo proteins to COPII vesicles and the role of different transport components in the early secretory pathway of mammalian cells.  相似文献   

10.
The coat protein complex II (COPII) generates transport vesicles that mediate protein export from the endoplasmic reticulum (ER). The first step of COPII vesicle formation involves conversion of Sar1p-GDP to Sar1p-GTP by guanine-nucleotide-exchange factor (GEF) Sec12p. In Saccharomyces cerevisiae, Sed4p is a structural homolog of Sec12p, but no GEF activity toward Sar1p has been found. Although the role of Sed4p in COPII vesicle formation is implied by the genetic interaction with SAR1, the molecular basis by which Sed4p contributes to this process is unclear. This study showed that the cytoplasmic domain of Sed4p preferentially binds the nucleotide-free form of Sar1p and that Sed4p binding stimulates both the intrinsic and Sec23p GTPase-activating protein (GAP)-accelerated GTPase activity of Sar1p. This stimulation of Sec23p GAP activity by Sed4p leads to accelerated dissociation of coat proteins from membranes. However, Sed4p binding to Sar1p occurs only when cargo is not associated with Sar1p. On the basis of these findings, Sed4p appears to accelerate the dissociation of the Sec23/24p coat from the membrane, but the effect is limited to Sar1p molecules that do not capture cargo protein. We speculate that this restricted coat disassembly may contribute to the concentration of specific cargo molecules into the COPII vesicles.  相似文献   

11.
SNARE selectivity of the COPII coat   总被引:16,自引:0,他引:16  
Mossessova E  Bickford LC  Goldberg J 《Cell》2003,114(4):483-495
The COPII coat buds transport vesicles from the endoplasmic reticulum that incorporate cargo and SNARE molecules. Here, we show that recognition of the ER-Golgi SNAREs Bet1, Sed5, and Sec22 occurs through three binding sites on the Sec23/24 subcomplex of yeast COPII. The A site binds to the YNNSNPF motif of Sed5. The B site binds to Lxx-L/M-E sequences present in both the Bet1 and Sed5 molecules, as well as to the DxE cargo-sorting signal. A third, spatially distinct site binds to Sec22. COPII selects the free v-SNARE form of Bet1 because the LxxLE sequence is sequestered in the four-helix bundle of the v-/t-SNARE complex. COPII favors Sed5 within the Sed5/Bos1/Sec22 t-SNARE complex because t-SNARE assembly removes autoinhibitory contacts to expose the YNNSNPF motif. The COPII coat seems to be a specific conductor of the fusogenic forms of these SNAREs, suggesting how vesicle fusion specificity may be programmed during budding.  相似文献   

12.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

13.
In eukaryotes, coat protein complex II (COPII) proteins are involved in transporting cargo proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The COPII proteins, Sar1, Sec23/24, and Sec13/31 polymerize into a coat that gathers cargo proteins into a coated vesicle. Structures have been recently solved of individual COPII proteins, COPII proteins in complex with cargo, and higher‐order COPII coat assemblies. In this review, we will summarize the latest developments in COPII structure and discuss how these structures shed light on the functional mechanisms of the COPII coat.  相似文献   

14.
Coat protein complex II (COPII) is a multi-subunit protein complex responsible for the formation of membrane vesicles at the endoplasmic reticulum. The assembly of this complex on the endoplasmic reticulum membrane needs to be tightly regulated to ensure efficient and specific incorporation of cargo proteins into nascent vesicles. Recent studies of a genetic disease affecting COPII function, and a structural analysis of COPII subunit interactions emphasize the central role of the Sec23 subunit in COPII coat assembly. Similarly, the demonstration that Sec23 interacts physically and functionally with proteins involved in both vesicle tethering and the transport along microtubules indicates that the Sec23 subunit is crucially important in linking COPII vesicle formation to anterograde transport events.  相似文献   

15.
In eukaryotic membrane trafficking, emergent protein folding pathways dictated by the proteostasis network (the 'PN') in each cell type are linked to the coat protein complex II (COPII) system that initiates transport through the exocytic pathway. These coupled pathways direct the transit of protein cargo from the endoplasmic reticulum (ER) to diverse subcellular and extracellular destinations. Understanding how the COPII system selectively manages the trafficking of distinct folded states of nascent cargo (comprising one-third of the proteins synthesized by the eukaryotic genome) in close cooperation with the PN remains a formidable challenge to the field. Whereas the PN may contain a thousand component, the minimal COPII coat components that drive all vesicle budding from the ER include Sar1 (a GTPase), Sec12 (a guanine nucleotide exchange factor), Sec23-Sec24 complexes (protein cargo selectors) and the Sec13-Sec31 complex (that functions as a protein cargo collector and as a polymeric lattice generator to promote vesicle budding). A wealth of data suggests a hierarchical role of the PN and COPII components in coupling protein folding with recruitment and assembly of vesicle coats on the ER. In this minireview, we focus on insights recently gained from the study of inherited human disease states of the COPII machinery. We explore the relevance of the COPII system to human biology in the context of its inherent link with the remarkably flexible folding capacity of the PN in each cell type and in response to the environment. The pharmacological manipulation of this coupled system has important therapeutic implications for restoration of function in human disease.  相似文献   

16.
Formation of ER-derived protein transport vesicles requires three cytosolic components, a small GTPase, Sar1p, and two heterodimeric complexes, Sec23/24p and Sec13/31p, which comprise the COPII coat. We investigated the role of Lst1p, a Sec24p homologue, in cargo recruitment into COPII vesicles in Saccharomyces cerevisiae. A tagged version of Lst1p was purified and eluted as a heterodimer complexed with Sec23p comparable to the Sec23/24p heterodimer. We found that cytosol from an lst1-null strain supported the packaging of alpha-factor precursor into COPII vesicles but was deficient in the packaging of Pma1p, the essential plasma membrane ATPase. Supplementation of mutant cytosol with purified Sec23/Lst1p restored Pma1p packaging into the vesicles. When purified COPII components were used in the vesicle budding reaction, Pma1p packaging was optimal with a mixture of Sec23/24p and Sec23/Lst1p; Sec23/Lst1p did not replace Sec23/24p. Furthermore, Pma1p coimmunoprecipitated with Lst1p and Sec24p from vesicles. Vesicles formed with a mixture of Sec23/Lst1p and Sec23/24p were similar morphologically and in their buoyant density, but larger than normal COPII vesicles (87-nm vs. 75-nm diameter). Immunoelectronmicroscopic and biochemical studies revealed both Sec23/Lst1p and Sec23/24p on the membranes of the same vesicles. These results suggest that Lst1p and Sec24p cooperate in the packaging of Pma1p and support the view that biosynthetic precursors of plasma membrane proteins must be sorted into ER-derived transport vesicles. Sec24p homologues may comprise a more complex coat whose combinatorial subunit composition serves to expand the range of cargo to be packaged into COPII vesicles. By changing the geometry of COPII coat polymerization, Lst1p may allow the transport of bulky cargo molecules, polymers, or particles.  相似文献   

17.
COPII coat proteins are required for direct capture of cargo and SNARE proteins into transport vesicles from the endoplasmic reticulum (ER). Cargo and SNARE capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p. The assembly and disassembly cycle of the prebudding complex on ER membranes is coupled to the Sar1p GTPase cycle. Using FRET to monitor a single round of Sec23/24p binding and dissociation from SNAREs in reconstituted liposomes, we show that Sec23/24p dissociates from v-SNARE and complexed t-SNARE with kinetics slower than Sar1p-GTP hydrolysis. Once Sec23/24p becomes associated with v-SNARE or complexed t-SNARE, the complex remains assembled during multiple rounds of Sar1p-GTP hydrolysis mediated by the GDP-GTP exchange factor Sec12p. These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles.  相似文献   

18.
Malhotra V  Erlmann P 《The EMBO journal》2011,30(17):3475-3480
COPII vesicles mediate the export of secretory cargo from endoplasmic reticulum (ER) exit sites. However, of 60-90 nm diameter COPII vesicles are too small to accommodate secreted molecules such as the collagens. The ER exit site-located proteins TANGO1 and cTAGE5 are required for the transport of collagens and therefore provide a means to understand the export of big cargo and the mechanism of COPII carrier size regulation commensurate with cargo dimensions.  相似文献   

19.
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.  相似文献   

20.
Mutant forms of presenilin (PS) 1 and 2 and amyloid precursor protein (APP) lead to familial Alzheimer's disease. Several reports indicate that PS may modulate APP export from the endoplasmic reticulum (ER). To develop a test of this possibility, we reconstituted the capture of APP and PS1 in COPII (coat protein complex II) vesicles formed from ER membranes in permeabilized cultured cells. The recombinant forms of mammalian COPII proteins were active in a reaction that measures coat subunit assembly and coated vesicle budding on chemically defined synthetic liposomes. However, the recombinant COPII proteins were not active in cargo capture and vesicle budding from microsomal membranes. In contrast, rat liver cytosol was active in stimulating the sorting and packaging of APP, PS1, and p58 (an itinerant ER to Golgi marker protein) into transport vesicles from donor ER membranes. Budding was stimulated in dilute cytosol by the addition of recombinant COPII proteins. Fractionation of the cytosol suggested one or more additional proteins other than the COPII subunits may be essential for cargo selection or vesicle formation from the mammalian ER membrane. The recombinant Sec24C specifically recognized the APP C-terminal region for packaging. Titration of Sarla distinguished the packaging requirements of APP and PS1. Furthermore, APP packaging was not affected by deletion of PS1 or PS1 and 2, suggesting APP and PS1 trafficking from the ER are normally uncoupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号