首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.  相似文献   

2.
Foods that are rich in fat and sugar significantly contribute to over-eating and escalating rates of obesity. The consumption of palatable foods can produce a rewarding effect that strengthens action-outcome associations and reinforces future behavior directed at obtaining these foods. Increasing evidence that the rewarding effects of energy-dense foods play a profound role in overeating and the development of obesity has heightened interest in studying the genes, molecules and neural circuitry that modulate food reward. The rewarding impact of different stimuli can be studied by measuring the willingness to work to obtain them, such as in operant conditioning tasks. Operant models of food reward measure acquired and voluntary behavioral responses that are directed at obtaining food. A commonly used measure of reward strength is an operant procedure known as the progressive ratio (PR) schedule of reinforcement. In the PR task, the subject is required to make an increasing number of operant responses for each successive reward. The pioneering study of Hodos (1961) demonstrated that the number of responses made to obtain the last reward, termed the breakpoint, serves as an index of reward strength. While operant procedures that measure changes in response rate alone cannot separate changes in reward strength from alterations in performance capacity, the breakpoint derived from the PR schedule is a well-validated measure of the rewarding effects of food. The PR task has been used extensively to assess the rewarding impact of drugs of abuse and food in rats (e.g., 6-8), but to a lesser extent in mice. The increased use of genetically engineered mice and diet-induced obese mouse models has heightened demands for behavioral measures of food reward in mice. In the present article we detail the materials and procedures used to train mice to respond (lever-press) for a high-fat and high-sugar food pellets on a PR schedule of reinforcement. We show that breakpoint response thresholds increase following acute food deprivation and decrease with peripheral administration of the anorectic hormone leptin and thereby validate the use of this food-operant paradigm in mice.  相似文献   

3.
氨基丁酸B型受体(GABAB受体)是治疗药物成瘾的潜在靶点,伏隔核壳部(nucleus accumbens shell, AcbSh)是成瘾环路的关键节点,但AcbSh GABA_B受体与记忆再巩固的关系尚不清楚。本文旨在探讨AcbSh微量灌注GABA_B受体激动剂巴氯芬(baclofen, BLF)对吗啡奖赏记忆再巩固及复吸行为的影响。建立吗啡条件位置性偏爱(conditioned place preference, CPP)小鼠模型,采用吗啡奖赏记忆提取激活实验,对比观察环境线索激活吗啡奖赏记忆后,双侧AcbSh灌注BLF对吗啡CPP、吗啡激发CPP重建以及自主活动量的影响。结果表明,吗啡奖赏记忆激活后,Acb Sh单次注入0.06nmol/0.2μL/侧或0.12nmol/0.2μL/侧BLF显著抑制吗啡CPP,且吗啡激发不能重建CPP,而0.01nmol/0.2μL/侧BLF灌注不能抑制吗啡CPP。激活后注入生理盐水及未激活组BLF灌注均未抑制CPP。无论是否激活吗啡奖赏记忆,BLF注入AcbSh都不影响小鼠自主活动。以上结果提示,AcbSh GABA_B受体参与了吗啡CPP的记忆再巩固。记忆激活后激动AcbSh GABA_B受体可通过阻断吗啡CPP的记忆再巩固,消除奖赏记忆,抑制复吸行为。  相似文献   

4.
The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.  相似文献   

5.
[McDowell, J.J, 2004. A computational model of selection by consequences. J. Exp. Anal. Behav. 81, 297-317] instantiated the principle of selection by consequences in a virtual organism with an evolving repertoire of possible behaviors undergoing selection, reproduction, and mutation over many generations. The process is based on the computational approach, which is non-deterministic and rules-based. The model proposes a causal account for operant behavior. McDowell found that the virtual organism consistently showed a hyperbolic relationship between response and reinforcement rates according to the quantitative law of effect. To continue validation of the computational model, the present study examined its behavior on the molecular level by comparing the virtual organism's IRT distributions in the form of log survivor plots to findings from live organisms. Log survivor plots did not show the "broken-stick" feature indicative of distinct bouts and pauses in responding, although the bend in slope of the plots became more defined at low reinforcement rates. The shape of the virtual organism's log survivor plots was more consistent with the data on reinforced responding in pigeons. These results suggest that log survivor plot patterns of the virtual organism were generally consistent with the findings from live organisms providing further support for the computational model of selection by consequences as a viable account of operant behavior.  相似文献   

6.
Chromatin remodelling is integral to the formation of long-term memories. Recent evidence suggests that histone modification may play a role in the persistence of memories associated with drug use. The present series of experiments aimed to examine the effect of histone deacetylase (HDAC) inhibition on the extinction and reinstatement of nicotine self-administration. Rats were trained to intravenously self-administer nicotine for 12 days on a fixed-ratio 1 schedule. In Experiment 1, responding was then extinguished through removal of nicotine and response-contingent cues. After each extinction session, the HDAC inhibitor, sodium butyrate (NaB), was administered immediately, or six hours after each session. In Experiment 2, response-contingent cues remained available across extinction to increase rates of responding during this phase, and NaB was administered immediately after the session. Finally, in Experiment 3, the effect of NaB treatment on extinction of responding for sucrose pellets was assessed. Across all experiments reinstatement to the cue and/or the reward itself was then tested. In the first experiment, treatment with NaB significantly attenuated nicotine and nicotine + cue reinstatement when administered immediately, but not six hours after each extinction session. When administered after cue-extinction (Expt. 2), NaB treatment specifically facilitated the rate of extinction across sessions, indicating that HDAC inhibition enhanced consolidation of the extinction memory. In contrast, there was no effect of NaB on the extinction and reinstatement of sucrose-seeking (Expt. 3), indicating that the observed effects are specific to a drug context. These results provide the first demonstration that HDAC inhibition facilitates the extinction of responding for an intravenously self-administered drug of abuse and further highlight the potential of HDAC inhibitors in the treatment of drug addiction.  相似文献   

7.
Relapse to smoking occurs at higher rates in women compared with men, especially when triggered by stress. Studies suggest that sex‐specific interactions between nicotine reward and stress contribute to these sex differences. Accordingly, novel treatment options targeting stress pathways, such as guanfacine, an α2‐adrenergic receptor agonist, may provide sex‐sensitive therapeutic effects. Preclinical studies are critical for elucidating neurobiological mechanisms of stress‐induced relapse and potential therapies, but rodent models of nicotine addiction are often hindered by large behavioral variability. In this study, we used nicotine conditioned place preference to investigate stress‐induced reinstatement of nicotine preference in male and female mice, and the effects of guanfacine on this behavior. Our results showed that overall, nicotine induced significant place preference acquisition and swim stress‐induced reinstatement in both male and female mice, but with different nicotine dose‐response patterns. In addition, we explored the variability in nicotine‐dependent behaviors with median split analyses and found that initial chamber preference in each sex differentially accounted for variability in stress‐induced reinstatement. In groups that showed significant stress‐induced reinstatement, pretreatment with guanfacine attenuated this behavior. Finally, we evaluated neuronal activation by Arc immunoreactivity in the infralimbic cortex, prelimbic cortex, anterior insula, basolateral amygdala, lateral central amygdala and nucleus accumbens core and shell. Guanfacine induced sex‐dependent changes in Arc immunoreactivity in the infralimbic cortex and anterior insula. This study demonstrates sex‐dependent relationships between initial chamber preference and stress‐induced reinstatement of nicotine conditioned place preference, and the effects of guanfacine on both behavior and neurobiological mechanisms.  相似文献   

8.
The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touch screen based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food magazine head entries). Overall, these assays provide robust paradigms for future studies using the mouse to elucidate the neural, molecular and genetic factors underpinning reward-related behaviors relevant to addiction research.  相似文献   

9.
Brown RM  Short JL  Lawrence AJ 《PloS one》2010,5(12):e15889
Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.  相似文献   

10.
Learning to anticipate future events on the basis of past experience with the consequences of one's own behavior (operant conditioning) is a simple form of learning that humans share with most other animals, including invertebrates. Three model organisms have recently made significant contributions towards a mechanistic model of operant conditioning, because of their special technical advantages. Research using the fruit fly Drosophila melanogaster implicated the ignorant gene in operant conditioning in the heat-box, research on the sea slug Aplysia californica contributed a cellular mechanism of behavior selection at a convergence point of operant behavior and reward, and research on the pond snail Lymnaea stagnalis elucidated the role of a behavior-initiating neuron in operant conditioning. These insights demonstrate the usefulness of a variety of invertebrate model systems to complement and stimulate research in vertebrates.  相似文献   

11.
The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose-intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours.  相似文献   

12.
Improved prevention and treatment of drug addiction will require deeper understanding of genetic factors contributing to susceptibility to excessive drug use. Intravenous operant self-administration methods have greatly advanced understanding of behavioral traits related to addiction. However, these methods are not suitable for large-scale genetic experiments in mice. Selective breeding of mice can aggregate 'addiction alleles' in a model that has the potential to identify coordinated effects of multiple genes. We produced mouse lines that orally self-administer high (MAHDR) or low (MALDR) amounts of methamphetamine, representing the first demonstration of selective breeding for self-administration of any psychostimulant drug. Conditioned place preference and taste aversion results indicate that MAHDR mice are relatively more sensitive to the rewarding effects and less sensitive to the aversive effects of methamphetamine, compared to MALDR mice. These results validate the oral route of self-administration for investigation of the motivational effects of methamphetamine and provide a viable alternative to intravenous self-administration procedures. Gene expression results for a subset of genes relevant to addiction-related processes suggest differential regulation by methamphetamine of apoptosis and immune pathways in the nucleus accumbens of MAHDR and MALDR mice. In each line, methamphetamine reduced an allostatic state by bringing gene expression back toward 'normal' levels. Genes differentially expressed in the drug-naï ve state, including Slc6a4 (serotonin transporter), Htr3a (serotonin receptor 3A), Rela [nuclear factor κB (NFκB)] and Fos (cFos), represent candidates whose expression levels may predict methamphetamine consumption and susceptibility to methamphetamine reward and aversion.  相似文献   

13.
Loss of motivation and learning impairments are commonly accepted core symptoms of psychiatric disorders such as depression and schizophrenia. Reward-motivated learning is dependent on the hippocampal formation but the molecular mechanisms that lead to functional incentive motivation in this brain region are still largely unknown. Recent evidence implicates neurotransmission via metabotropic glutamate receptors and Homer1, their interaction partner in the postsynaptic density, in drug addiction and motivational learning. As previous reports mainly focused on the prefrontal cortex and the nucleus accumbens, we now investigated the role of hippocampal Homer1 in operant reward learning in the present study. We therefore tested either Homer1 knockout mice or mice that overexpress Homer1 in the hippocampus in an operant conditioning paradigm. Our results show that deletion of Homer1 leads to a diverging phenotype that either displays an inability to perform the task or outstanding hyperactivity in both learning and motivational sessions. Due to the apparent bimodal distribution of this phenotype, the overall effect of Homer1 deletion in this paradigm is not significantly altered. Overexpression of hippocampal Homer1 did not lead to a significantly altered learning performance in any stage of the testing paradigm, yet may subtly contribute to emerging motivational deficits. Our results indicate an involvement of Homer1-mediated signaling in the hippocampus in motivation-based learning tasks and encourage further investigations regarding the specific molecular underpinnings of the phenotypes observed in this study. We also suggest to cautiously interpret the results of this and other studies regarding the phenotype following Homer1 manipulations in animals, since their behavioral phenotype appears to be highly diverse. Future studies would benefit from larger group sizes that would allow splitting the experimental groups in responders and non-responders.  相似文献   

14.
Glutamate receptors in mesolimbic areas such as the nucleus accumbens, ventral tegmental area, prefrontal cortex (PFC), and hippocampus (HIP) are a component of the mechanisms of drug-induced reward and can modulate the firing pattern of dopaminergic neurons in the reward system. In addition, several lines of study have indicated that cAMP response element-binding protein (CREB) and c-fos have important role in morphine-induced conditioned place preference (CPP) induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated CREB (p-CREB) and c-fos induction within the nucleus accumbens (NAc), HIP, and PFC after intracerebroventricular (ICV) administration of different doses of CNQX or vehicle during extinction period or reinstatement of morphine-induced CPP. In all groups, the CPP procedure was done; afterward, the conditioning scores were recorded by Ethovision software. After behavioral test recording, we dissected out the NAc, HIP, and PFC regions and measured the p-CREB/CREB ratio and c-fos level by Western blot analysis. Our results showed that administration of CNQX significantly shortened the extinction of morphine CPP. Besides, ICV microinjection of CNQX following extinction period decreased the reinstatement of morphine CPP in extinguished rats. In molecular section, in treatment group, all mentioned factors were dose-dependently decreased in comparison with vehicle group (DMSO) after ICV microinjection of different doses of CNQX but not in pre-extinction microinjection. These findings suggested that antagonism of AMPA receptor decreased p-CREB/CREB ratio and c-fos level in the PFC, NAc, and HIP. Modulation of the drug memory reconsolidation may be useful for faster extinction of drug-induced reward and attenuation of drug-seeking behavior.  相似文献   

15.
The most insidious aspect of drug addiction is the high propensity for relapse. Animal models of relapse, known as reinstatement procedures, have been used extensively to study the neurobiology and phenomenology of relapse to drug use. Although procedural variations have emerged over the past several decades, the most conventional reinstatement procedures are based on the drug self-administration (SA) model. In this model, an animal is trained to perform an operant response to obtain drug. Subsequently, the behavior is extinguished by withholding response-contingent reinforcement. Reinstatement of drug seeking is then triggered by a discrete event, such as an injection of the training drug, re-exposure to drug-associated cues, or exposure to a stressor 1.Reinstatement procedures were originally developed to study the ability of acute non-contingent exposure to the training drug to reinstate drug seeking in rats and monkeys 1, 2. Reinstatement procedures have since been modified to study the role of environmental stimuli, including drug-associated cues and exposure to various forms of stress, in relapse to drug seeking 1, 3, 4.Over the past 15 years, a major focus of the reinstatement literature has been on the role of stress in drug relapse. One of the most commonly used forms of stress for studying this relationship is acute exposures to mild, intermittent, electric footshocks. The ability of footshock stress to induce reinstatement of drug seeking was originally demonstrated by Shaham and colleagues (1995) in rats with a history of intravenous heroin SA5. Subsequently, the effect was generalized to rats with histories of intravenous cocaine, methamphetamine, and nicotine SA, as well as oral ethanol SA 3, 6.Although footshock-induced reinstatement of drug seeking can be achieved reliably and robustly, it is an effect that tends to be sensitive to certain parametrical variables. These include the arrangement of extinction and reinstatement test sessions, the intensity and duration of footshock stress, and the presence of drug-associated cues during extinction and testing for reinstatement. Here we present a protocol for footshock-induced reinstatement of cocaine seeking that we have used with consistent success to study the relationship between stress and cocaine seeking.Download video file.(57M, mov)  相似文献   

16.
In this protocol, social motivation is measured in mice through a pair of operant conditioning paradigms. To conduct the experiments, two-chambered shuttle boxes were equipped with two operant levers (left and right) and a food receptacle in one chamber, which was then divided from the second chamber by an automated guillotine door covered by a wire grid. Different stimulus mice, rotated across testing days, served as a social stimulus behind the wire grid, and were only visible following the opening of the guillotine door. Test mice were trained to lever press in order to open the door and gain access to the stimulus partner for 15 sec. The number of lever presses required to obtain the social reward progressively increased on a fixed schedule of 3. Testing sessions ended after test mice stopped lever pressing for 5 consecutive minutes. The last reinforced ratio or breakpoint can be used as a quantitative measure of social motivation. For the second paradigm, test mice were trained to discriminate between left and right lever presses in order to obtain either a food reward or the social reward. Mice were rewarded for every 3 presses of each respective lever. The number of food and social rewards can be compared as a measurement of the value placed upon each reward. The ratio of each reward type can also be compared between mouse strains and the change in this ratio can be monitored within testing sessions to measure satiation with a given reward type. Both of these operant conditioning paradigms are highly useful for the quantification of social motivation in mouse models of autism and other disorders of social behavior.  相似文献   

17.
Cigarettes and alcohol are the most abused substances in the world and are commonly co-abused. Nicotine primarily acts in the brain on nicotinic acetylcholine receptors (nAChR), which are also a target for alcohol. The alpha6 subunit of nAChR is expressed almost exclusively in the brain reward system and may modulate the rewarding properties of alcohol and nicotine. Recently, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI) was synthesized as a selective, brain penetrant α6 subunit antagonist that reduces nicotine self-administration. The current study aimed to examine the effects of bPiDI on alcohol self-administration in inbred alcohol-preferring (iP) rats. Adult, male iP rats were trained to self-administer alcohol or sucrose. Once stable responding was achieved, rats were injected with bPiDI (1, 3 mg/kg, i.p.) and tested for self-administration under fixed and progressive ratio schedules of reinforcement. They subsequently underwent extinction, in which no rewards or cues were presented in the operant chambers. Then, they were injected with bPiDI prior to testing for cue-induced reinstatement of reward seeking. bPiDI (3 mg/kg) significantly reduced alcohol self-administration in both fixed and progressive ratios without any effects on sucrose self-administration or locomotor activity. In contrast, bPiDI (3 mg/kg) did not inhibit cue-induced reinstatement of either alcohol or sucrose seeking. The results support the involvement of α6 containing nAChR in reinforcing effects of alcohol, but not relapse to alcohol-seeking, without any impact on responding for a natural reward or general activity. bPiDI may be a potential lead molecule for a therapeutic strategy to limit nicotine and alcohol consumption.  相似文献   

18.
In contemporary reinforcement learning models, reward prediction error (RPE), the difference between the expected and actual reward, is thought to guide action value learning through the firing activity of dopaminergic neurons. Given the importance of dopamine in reward learning and the involvement of Akt1 in dopamine-dependent behaviors, the aim of this study was to investigate whether Akt1 deficiency modulates reward learning and the magnitude of RPE using Akt1 mutant mice as a model. In comparison to wild-type littermate controls, the expression of Akt1 proteins in mouse brains occurred in a gene-dosage-dependent manner and Akt1 heterozygous (HET) mice exhibited impaired striatal Akt1 activity under methamphetamine challenge. No genotypic difference was found in the basal levels of dopamine and its metabolites. In a series of reward-related learning tasks, HET mice displayed a relatively efficient method of updating reward information from the environment during the acquisition phase of the two natural reward tasks and in the reverse section of the dynamic foraging T-maze but not in methamphetamine-induced or aversive-related reward learning. The implementation of a standard reinforcement learning model and the Bayesian hierarchical parameter estimation show that HET mice have higher RPE magnitudes and that their action values are updated more rapidly among all three test sections in T-maze. These results indicate that Akt1 deficiency modulates natural reward learning and RPE. This study showed a promising avenue for investigating RPE in mutant mice and provided evidence for the potential link from genetic deficiency, to neurobiological abnormalities, to impairment in higher-order cognitive functioning.  相似文献   

19.
Reward-seeking and relapse to drug use are two characteristics of addiction and reports have indicated the role of hippocampal structures in reward learning. To find the best ways of treatment, the understanding of the neurobiological mechanisms of reward and its involved factors is a must. For this reason, in the present study, we aimed to investigate the role of D1- and D2-like dopamine receptors and compared their activities in the CA1 region, focusing on the reinstatement induced by forced swim stress (FSS) or the combination of FSS and a subthreshold dose of morphine in extinguished morphine-CPP in rats. The rats were bilaterally implanted by two separate cannulas into the CA1 region. The animals received different doses of SCH23390 or sulpiride (0.5, 2, and 4 µg/0.5 µl vehicle/side) into the CA1 region on the reinstatement day and were tested for FSS-induced reinstatement or the combination of FSS and a subthreshold dose of morphine in separate groups. Our findings indicated that the D1- and D2-like receptor antagonists attenuated the reinstatement induced by the combination of FSS and the subthreshold dose of morphine. The behavioral results were more prominent in the groups of animals that received SCH23390 as compared to sulpiride. The data may suggest a role for the dopamine receptors in the CA1 region in relapse to drugs of abuse, which may be induced by exposure to a stressor.  相似文献   

20.
Drugs that are addictive in humans have a number of commonalities in animal model systems-(1). they enhance electrical brain-stimulation reward in the core meso-accumbens reward circuitry of the brain, a circuit encompassing that portion of the medial forebrain bundle (MFB) which links the ventral tegmental area (VTA) of the mesencephalic midbrain with the nucleus accumbens (Acb) of the ventral limbic forebrain; (2). they enhance neural firing of a core dopamine (DA) component of this meso-accumbens reward circuit; (3). they enhance DA tone in this reward-relevant meso-accumbens DA circuit, with resultant enhancement of extracellular Acb DA; (4). they produce conditioned place preference (CPP), a behavioral model of incentive motivation; (5). they are self-administered; and (6). they trigger reinstatement of drug-seeking behavior in animals behaviorally extinguished from intravenous drug self-administration behavior and, perforce, pharmacologically detoxified from their self-administered drug. Cannabinoids were long considered 'anomalous', in that they were believed to not interact with these brain reward processes or support drug-seeking and drug-taking behavior in these animal model systems. However, it is now clear-from the published data of several research groups over the last 15 years-that this view of cannabinoid action on brain reward processes and reward-related behaviors is untenable. This paper reviews those data, and concludes that cannabinoids act on brain reward processes and reward-related behaviors in strikingly similar fashion to other addictive drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号