首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the drought resistance of a wheat (Triticum aestivum L.) stay-green mutant tasg1 and its wild-type (WT) in field experiments conducted for two years. Drought stress was imposed by controlling irrigation and sheltering the plants from rain. Compared with the WT, tasg1 exhibited a distinct delayed senescence under both normal and drought stress conditions, as indicated by slower degradation of chlorophyll and decrease in net photosynthetic rate than in WT. At the same time, tasg1 mutants maintained more integrated chloroplasts and thylakoid ultrastructure than did WT plants under drought stress. Lower malondialdehyde content and higher antioxidative enzyme activities in tasg1, compared to WT, may be involved in the stay-green phenotype and drought resistance of tasg1.  相似文献   

2.

Key message

By measuring the cytokinin content directly and testing the sensitivity to the cytokinin inhibitor lovastatin, we demonstrated that tasg1 cytokinin metabolism is different from wild-type.

Abstract

Our previous studies have indicated that compared with wild-type (WT) plants, a wheat stay-green mutant tasg1 exhibited delayed senescence. In this study, we found that the root development of tasg1 occurred later than that of WT. The number of lateral roots was fewer, but the lateral root length was longer in tasg1 than in WT, which resulted in a lower root to shoot ratio in tasg1 than WT. The levels of cytokinin (CK), CK activity, and expression of CK metabolic genes were measured. We found that the total CK content in the root tips and leaf of tasg1 was greater than in WT. The accumulation of mRNA of the CK synthetic gene (TaIPT) in tasg1 was higher than in WT at 9 and 11 days during seedling growth, but the expression of CK oxidase gene (TaCKX) was significantly lower in tasg1. Furthermore, the CK inhibitor lovastatin was used to inhibit CK activity. When treated with lovastatin, both the chlorophyll content and thylakoid membrane protein stability were significantly lower in tasg1 than WT, consistent with the inhibited expression of senescence-associated genes (TaSAGs) in tasg1. Lovastatin treatment also inhibited the antioxidative capability of wheat seedlings, and tasg1 was more sensitive to lovastatin than WT, as indicated by the MDA content, protein carbonylation, and antioxidant enzyme activity. The decreased antioxidative capability after lovastatin treatment may be related to the down-regulation of some antioxidase genes. These results suggest that the CK metabolism was altered in tasg1, which may play an important role in its ability to delay senescence.
  相似文献   

3.
冬小麦叶片持绿能力及其衰老特征研究   总被引:6,自引:1,他引:5  
以12个冬小麦(Triticum aestivum L.)品种为供试材料,通过田间实验连续2年于开花后定期测定各品种的绿叶数目、绿叶面积、叶绿素和MDA含量以及SOD和CAT活性等指标,并以生理成熟时的保绿度、衰老启动时间为指标进行Hierarchical聚类分析,对小麦品种持绿能力进行分级.结果表明,参试冬小麦品种可分为持绿和非持绿两种类型,‘潍麦8号'(WM8)和‘豫麦66'(YM66)两年均表现为持绿型小麦.在整个灌浆期,持绿型小麦品种绿叶数目、面积、叶绿素含量明显高于非持绿型品种,叶片保护酶SOD与CAT活性也较非持绿小麦强,而其MDA含量明显低于非持绿型小麦品种.持绿型小麦叶片衰老启动时间延迟,生育后期绿叶面积较大,光合作用时间延长,具有较高的产量.本研究结果为冬小麦的品种选育、布局等相关研究奠定基础.  相似文献   

4.
Three independent durum wheat mutant lines that show delayed leaf senescence or stay-green (SG) phenotype, SG196, SG310 and SG504, were compared to the parental genotype, cv. Trinakria, with respect to the photosynthetic parameters and the cellular redox state of the flag leaf in the period from flowering to senescence. The SG mutants maintained their chlorophyll content and net photosynthetic rate for longer than Trinakria, thus revealing a functional SG phenotype. They also showed a better redox state as demonstrated by: (1) a lower rate of superoxide anion production due to generally higher activity of the antioxidant enzymes superoxide dismutase and catalase in all of the SG mutants and also of the total peroxidase in SG196; (2) a higher thiol content that can be ascribed to a higher activity of the NADPH-providing enzyme glucose-6-phosphate dehydrogenase in all of the SG mutants and also of the NADP+-dependent malic enzyme in SG196; (3) a lower pro-oxidant activity of lipoxygenase that characterises SG196 and SG504 mutants close to leaf senescence. Overall, these results show a general relationship in durum wheat between the SG phenotype and a better redox state. This relationship differs across the different SG mutants, probably as a consequence of the different set of altered genes underlying the SG trait in these independent mutant lines.  相似文献   

5.
Chlorophyll degradation is an important phenomenon in the senescence process. It is necessary for the degradation of certain chlorophyll–protein complexes and thylakoid membranes during leaf senescence. Mutants retaining greenness during leaf senescence are known as 'stay-green' mutants. Non-functional type stay-green mutants, which possess defects in chlorophyll degradation, retain greenness but not leaf functionality during senescence. Here, we report a new stay-green mutant in rice, nyc3 . nyc3 retained a higher chlorophyll a and chlorophyll b content than the wild-type but showed a decrease in other senescence parameters during dark incubation, suggesting that it is a non-functional stay-green mutant. In addition, a small amount of pheophytin a , a chlorophyll a -derivative without Mg2+ ions in its tetrapyrrole ring, accumulated in the senescent leaves of nyc3 . nyc3 shows a similar but weaker phenotype to stay green ( sgr ), another non-functional stay-green mutant in rice. The chlorophyll content of nyc3 sgr double mutants at the late stage of leaf senescence was also similar to that of sgr . Linkage analysis revealed that NYC3 is located near the centromere region of chromosome 6. Map-based cloning of genes near the centromere is very difficult because of the low recombination rate; however, we overcame this problem by using ionizing radiation-induced mutant alleles harboring deletions of hundreds of kilobases. Thus, it was revealed that NYC3 encodes a plastid-localizing α/β hydrolase-fold family protein with an esterase/lipase motif. The possible function of NYC3 in the regulation of chlorophyll degradation is discussed.  相似文献   

6.
7.
Oh MH  Moon YH  Lee CH 《Plant & cell physiology》2003,44(12):1368-1377
Leaf senescence in a stay-green mutant of Arabidopsis thaliana, ore10, was investigated during dark-incubation of its detached leaves. During this dark-induced senescence (DIS), Chl loss was delayed in ore10 mutants, as compared with wild type, but the rate of decline in the photochemical efficiency of PSII was not delayed in mutant leaves. After 2 d of DIS, native green gel electrophoresis of ore 10 leaf proteins resulted in a significant amount of pigment remaining as aggregates on top of the stacking gel. In addition, the accumulation of aggregates coincided with the emergence of a new band near 700 nm (F(699)) in the 77 K fluorescence emission spectrum of the aggregates. At 4 d, F(699) became a major band, both in the isolated aggregates and in intact leaves. Prolonged treatment with detergents revealed that light-harvesting complex II (LHCII) remaining after 2 d was highly stable, and the accumulation of aggregates coincided with the appearance of truncated LHCII in senescing ore10 leaves. These results suggest that increased LHCII stability is due to the formation of aggregates of trimmed LHCII. Thus, the LHCII protein degradation step that follows proteolysis of its terminal peptides is a possible lesion site of the ore10 mutant.  相似文献   

8.
9.
It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.  相似文献   

10.
硫氮配施对持绿型小麦氮素运转及叶片衰老的影响   总被引:4,自引:0,他引:4  
以持绿型小麦品种‘豫麦66号’、‘潍麦8号’及非持绿型品种‘小偃6号’为材料,采用以氮肥为主区硫肥为副区的田间裂区试验,研究了2个施氮水平[纯氮120kg/hm2(N120)、220kg/hm2(N220)]和3个施硫水平[纯硫0kg/hm2(S0)、20kg/hm2(S20)、60kg/hm2(S60)]下植株各部位的含氮量、叶片干鲜重及叶片叶绿素含量的变化,探讨硫氮配施对不同类型小麦氮吸收及衰老的影响。结果表明:在相同处理下,持绿型小麦植株的总含氮量、氮素转运量、叶绿素含量、叶片含水量及穗粒数和千粒重均高于非持绿型小麦。N120处理条件下,不同硫肥处理时持绿型小麦与非持绿型小麦变化趋势相同,开花期茎和叶含氮量及叶绿素含量在S60处理下均低于其他2个硫肥处理,生育后期叶片含水量下降幅度也明显高于其他处理;在N220处理条件下,3个品种开花期叶含氮量、收获期总氮累积量、氮收获指数、叶绿素含量及叶片含水量在S60处理下均高于其他2个处理,其中非持绿型小麦在高硫处理条件下灌浆期的叶绿素含量的增长率明显高于持绿型小麦,而灌浆中后期叶片含水量的下降幅度则明显低于持绿型小麦。研究发现,施用硫肥在氮肥不足时会对小麦植株氮素的吸收利用及叶片衰老等方面产生负面影响,但在氮肥充足时却在氮素的吸收利用、延缓叶片衰老及最终籽粒产量和总生物量等方面表现出正面效应;本实验条件下,220kg/hm2左右施氮量和60kg/hm2左右施硫量有利于各品种小麦生长发育和产量提高;高N和高S水平对于延缓小麦的衰老而言,非持绿性小麦比持绿型小麦更明显。  相似文献   

11.
The green area displayed by a crop is a good indicator of its photosynthetic capacity, while chlorophyll retention or 'stay-green' is regarded as a key indicator of stress adaptation. Remote-sensing methods were tested to estimate these parameters in diverse wheat genotypes under different growing conditions. Two wheat populations (a diverse set of 294 advanced lines and a recombinant inbred line population of 169 sister lines derived from the cross between Seri and Babax) were grown in Mexico under three environments: drought, heat, and heat combined with drought. In the two populations studied here, a moderate heritable expression of stay-green was found-when the normalized difference vegetation index (NDVI) at physiological maturity was estimated using the regression of NDVI over time from the mid-stages of grain-filling to physiological maturity-and for the rate of senescence during the same period. Under heat and heat combined with drought environments, stay-green calculated as NDVI at physiological maturity and the rate of senescence, showed positive and negative correlations with yield, respectively. Moreover, stay-green calculated as an estimation of NDVI at physiological maturity and the rate of senescence regressed on degree days give an independent measurement of stay-green without the confounding effect of phenology. On average, in both populations under heat and heat combined with drought environments CTgf and stay-green variables accounted for around 30% of yield variability in multiple regression analysis. It is concluded that stay-green traits may provide cumulative effects, together with other traits, to improve adaptation under stress further.  相似文献   

12.
试验选用持绿型冬小麦(Triticum aestivum) ‘豫麦66’ (‘Ym66’)和‘潍麦8号’ (‘Wm8’)为研究材料, 以当地生产上起主导作用的冬小麦品种‘小偃22’ (‘XY22’)和‘小偃6号’ (‘XY6’)为对照。花后用塑料薄膜搭建成增温棚进行高温处理, 测定各品种绿叶数目、叶绿素和丙二醛(MDA)含量及叶片细胞膜透性, 并研究籽粒灌浆成熟期高温对持绿型小麦籽粒淀粉合成相关酶及粒重的影响。结果表明, 高温处理后, 各品种的绿叶数目和叶绿素含量都减少, MDA含量和膜透性都增加, 说明高温加速了小麦叶片衰老。同时, 各品种籽粒中与淀粉合成相关的酶(蔗糖合成酶(SS)和腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)、可溶性淀粉合酶(SSS))活性都低于正常生长下的籽粒中的酶活性, 其中高温对籽粒SS和AGPP活性的影响不显著,而对籽粒SSS活性的影响显著(p = 0.015)。品种间比较, 持绿型小麦在两种处理下, 都表现出较多的绿叶数目和较高的叶绿素含量; 且3种与淀粉合成相关的酶活性也都高于非持绿型小麦, 说明持绿型小麦酶活性受高温抑制程度较小。相关性分析表明, 所有品种籽粒SS、AGPP、SSS活性都与籽粒灌浆速率成极显著的正相关(相关系数r分别为0.905、0.419和0.801)。因而, 持绿型小麦不仅具有较好的持绿特性, 而且籽粒中与淀粉合成相关的3种酶活性都较高, 这有利于其籽粒淀粉的合成, 从而增加籽粒产量。  相似文献   

13.
Yellowing, which is related to the degradation of chlorophyll and chlorophyll–protein complexes, is a notable phenomenon during leaf senescence. NON-YELLOW COLORING1 ( NYC1 ) in rice encodes a membrane-localized short-chain dehydrogenase/reductase (SDR) that is thought to represent a chlorophyll  b reductase necessary for catalyzing the first step of chlorophyll  b degradation. Analysis of the nyc1 mutant, which shows the stay-green phenotype, revealed that chlorophyll  b degradation is required for the degradation of light-harvesting complex II and thylakoid grana in leaf senescence. Phylogenetic analysis further revealed the existence of NYC1-LIKE (NOL) as the most closely related protein to NYC1. In the present paper, the nol mutant in rice was also found to show a stay-green phenotype very similar to that of the nyc1 mutant, i.e. the degradation of chlorophyll  b was severely inhibited and light-harvesting complex II was selectively retained during senescence, resulting in the retention of thylakoid grana even at a late stage of senescence. The nyc1 nol double mutant did not show prominent enhancement of inhibition of chlorophyll degradation. NOL was localized on the stromal side of the thylakoid membrane despite the lack of a transmembrane domain. Immunoprecipitation analysis revealed that NOL and NYC1 interact physically in vitro . These observations suggest that NOL and NYC1 are co-localized in the thylakoid membrane and act in the form of a complex as a chlorophyll  b reductase in rice.  相似文献   

14.
The difference in Na+, K+ accumulation between the mutant and the wild type of wheat ( Triticum aestivum L. ) has been investigated. The authors report here that the mutant accumulated less Na + in the root and leaf than the wild type in response to NaCI stress. This difference in Na + accumulation in leaf was more significant than that in the root. The mutant kept a lower net accumulation rate of Na + than that in the wild type during the stress. K+ content in the leaves and roots of beth species reduced severely when exposed to NaC1, but the contents in the leaf and root of the mutant was higher than those of the wild type. The Na + dis- tribution in the seedlings of the mutant and the wild type was significantly different. When exposed to salt stress for 96 h, the quantity of the accumulated Na + in root was 44.3 % of the total Na + per seedling of the mutant, whereas it was 24.3% in the wild type, which was likely resulted from the reduction of Na+ transfer from roots to shoots in the mutant.  相似文献   

15.
转ipt和反义ACO基因番茄的叶片衰老相关特性   总被引:3,自引:0,他引:3  
以ipt和反义ACO转化的两类转基因番茄纯系为材料,研究在植株不同生长发育阶段,不同叶位中,与叶片衰老相关的生理生化指标.结果表明:两类基因导入番茄后,均可增强内源iPA和IAA表达水平,增加或保持番茄叶片的叶绿素含量、提高光合效率,进而明显地延缓植株的叶片衰老,提高单株果实产量.但它们调控叶片衰老的途径不同,ipt主要通过提高CTK的水平延缓叶片衰老,而反义ACO则主要是通过抑制乙烯生成,间接提高IAA的水平来实现.  相似文献   

16.
Sorghum is an important source of food, feed, and biofuel, especially in the semi-arid tropics because this cereal is well adapted to harsh, drought-prone environments. Post-flowering drought adaptation in sorghum is associated with the stay-green phenotype. Alleles that contribute to this complex trait have been mapped to four major QTL, Stg1-Stg4, using a population derived from BTx642 and RTx7000. Near-isogenic RTx7000 lines containing BTx642 DNA spanning one or more of the four stay-green QTL were constructed. The size and location of BTx642 DNA regions in each RTx7000 NIL were analysed using 62 DNA markers spanning the four stay-green QTL. RTx7000 NILs were identified that contained BTx642 DNA completely or partially spanning Stg1, Stg2, Stg3, or Stg4. NILs were also identified that contained sub-portions of each QTL and various combinations of the four major stay-green QTL. Physiological analysis of four RTx7000 NILs containing only Stg1, Stg2, Stg3, or Stg4 showed that BTx642 alleles in each of these loci could contribute to the stay-green phenotype. RTx7000 NILs containing BTx642 DNA corresponding to Stg2 retained more green leaf area at maturity under terminal drought conditions than RTx7000 or the other RTx7000 NILs. Under post-anthesis water deficit, a trend for delayed onset of leaf senescence compared with RTx7000 was also exhibited by the Stg2, Stg3, and Stg4 NILs, while significantly lower rates of leaf senescence in relation to RTx7000 were displayed by all of the Stg NILs to varying degrees, but particularly by the Stg2 NIL. Greener leaves at anthesis relative to RTx7000, indicated by higher SPAD values, were exhibited by the Stg1 and Stg4 NILs. The RTx7000 NILs created in this study provide the starting point for in-depth analysis of stay-green physiology, interaction among stay-green QTL and map-based cloning of the genes that underlie this trait.  相似文献   

17.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2002,40(4):547-552
A field experiment was conducted to investigate the changes in chlorophyll (Chl) and nitrogen (N) contents, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) contents and PEPC activity, and the photon-saturated net photosynthetic rate (P Nsat), and their relationships with leaf senescence in two maize hybrids with different senescent appearance. One stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55) hybrid were used in this study, and we found that Chl and N contents and the P Nsat in individual leaves of P3845 were greater than those in corresponding leaves of Hokkou 55 at the successive growth stages. In addition, larger contents of RuBPCO and PEPC, and a greater activity of PEPC were observed in P3845. Due to the lower rates of decrease of Chl, RuBPCO, and PEPC amounts per unit of N, and the lower net C translocation rate per unit of N in the stay-green hybrid, leaf senescence was delayed in comparison to the earlier senescent hybrid.  相似文献   

18.
Leaf senescence has an important role in the plant's nitrogen economy. Chlorophyll catabolism is a visible symptom of protein mobilization. Genetic and environmental factors that interfere with yellowing tend to modify protein degradation as well. The chlorophyll-protein relationship is much closer for membrane proteins than it is for soluble or total leaf proteins. In stay-greens, genotypes with a specific defect in the chlorophyll catabolism pathway, soluble protein degradation during senescence may be close to normal, but light-harvesting and reaction centre thylakoid membrane proteins are much more stable. Genes for the chlorophyll catabolism pathway and its control are important in the regulation of protein mobilization. Genes for three steps in the pathway are reported to have been isolated. The gene responsible for the stay-green phenotype in grasses and legumes has not yet been cloned but a fair amount is known about it. Pigment metabolism in senescing leaves of the Festuca-Lolium stay-green mutant is clearly disturbed and is consistent with a blockage at the ring-opening (PaO) step in chlorophyll breakdown. PaO is de novo synthesized in senescence and thought to be the key enzyme in the chlorophyll a catabolic pathway. The stay-green mutation is likely to be located in the PaO gene, or a specific regulator of it. These genes may well be in the various senescence-enhanced cDNA collections that have been generated, but functional handles on them are currently lacking. When the stay-green locus from Festuca pratensis was introgressed into Lolium temulentum, a gene encoding F. pratensis UDPG-pyrophosphorylase was shown to have been transferred on the same chromosome segment. A strategy is described for cloning the stay-green gene, based on subtractive PCR-based analyses of intergeneric introgressions and map-based cloning.  相似文献   

19.
NaCl胁迫下抗盐突变体和野生型小麦Na~ 、K~ 累积的差异分析   总被引:15,自引:0,他引:15  
对抗盐突变体和野生型小麦(TriticumaestivumL.)在盐胁迫下Na+、K+的累积状况进行了比较研究。结果表明,NaCl胁迫下突变体根和叶中Na+的相对累积较野生型显著地少,同时Na+的净累积速率显著地低。这种Na+相对累积少的状况在叶中表现尤为明显。两者叶中K+含量随盐浓度的增加显著下降,但突变体的含量均高于野生型。突变体根中K+的含量也显著高于野生型,且这种差异随盐浓度的提高而增大。分别统计突变体和野生型根和叶中Na+的含量以及每株幼苗的Na+总量以分析二者Na+在根和叶中的分布差异,结果表明300mmol/LNaCl胁迫96h后,突变体根中Na+的累积量占其整株幼苗Na+累积总量的444%,而野生型根中含量占其总量的243%。相对于野生型而言,在盐胁迫下突变体根中Na+分布比例的提高可有效地减少根中Na+向地上部分转运。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号