首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
阮清伟  俞卓伟  保志军  马永兴 《遗传》2013,35(7):813-822
衰老是进行性的、多细胞普遍存在的、不可逆的功能减退状态。免疫衰老主要表现为造血干细胞再生和淋巴系分化能力下降、机体对感染和疫苗的反应减弱、对炎症反应的放大和自身的免疫反应增加, 与衰老和增龄相关疾病密切相关。免疫基因变异, 影响机体免疫反应, 可加速或延缓衰老和增龄相关疾病。获得性免疫基因, 如对自身免疫性疾病起保护性作用的HLA II 抗原基因DRB1*11和DRB*16相关的单倍型在长寿老人频率增加。抗炎因子IL-10-1082G等位基因频率和TGFβ1单倍型cnd10T/C、cnd25G/G、-988C/C、-800G/A频率的下降, 促炎因子TNFα低表达相关的扩展的TNF-A基因型-1031C/C、-863C/A、-857C/C、IL-6-174 CC基因型, 和IFN-γ+874 T等位基因频率减少与免疫炎症反应易感性, 衰老相关疾病的发病率和死亡率正相关。固有免疫基因, 如高频表达抗炎的+896 G KIR4等位基因、CCR5Δ32突变、-765 C Cox-2等位基因、-1708 G和21 C 5-Lox等位基因多见于长寿老人。KIR 单倍型 KIR2DS5、A1B10减少, MBL2表达缺乏的单倍型LYPB、LYQC 和HYPD增加的老年人常伴有较高血清CMV抗体滴度。高频出现的CRP ATG单倍型和CFH 402 His 等位基因预示老年人高死亡率风险。文章对固有和获得性免疫基因多态性、单倍体与衰老及衰老相关疾病关系进展进行综述。加强分析扩展的单倍型、表观遗传学和造血干细胞衰老的遗传学研究将有助于更好地理解衰老和长寿的免疫遗传学基础。  相似文献   

2.
Allelic variants of the genes for chemokine receptors and their natural ligands, the chemokines, and cytokines can affect HIV-1 disease progression. This study investigates the level of expression of the CCR5-Δ32, CCR2b-641, RANTES In1.1C, SDF-1 3′A, IL-10-5′-592A and IL-4-589T alleles in two unique HIV-1 infected patient cohorts that represent the two distinct stages of disease progression, namely rapid progressors (RPs) and long term non-progressors (LTNPs) (n = 12/group) were recruited. Quantitation of the gene expression of CCR5-Δ32, CCR2b-641, RANTES In1.1C, SDF-1 3′A, IL-10-5′−592A and IL-4-589T in peripheral blood mononuclear leukocytes (PBML) isolated from patients was performed by real time, quantitative (Q)-PCR using DNA was isolated from PBML. We observed that expression of these HIV-protective alleles was generally greater in the LTNP cohort than the RP cohort. LTNPs expressed more of the protective chemokine, SDF-1α than RPs, and no statistically significant difference was observed in RANTES production between the LTNPs and RPs. The LTNPs expressed significantly less amounts of cytokines IL-10 and IL-4 as compared to the RPs. Our results demonstrate that gene polymorphisms for CCR5-Δ32, CCR2b-641, RANTES In1.1C, SDF-1 3′A, IL-10-5′−592A and IL-4-589T may be used as clinical markers to predict progression of HIV-1 infections.  相似文献   

3.
Development of effective topical microbicides for the prevention of HIV-1 sexual transmission represents a primary goal for the control of the AIDS pandemic. The viral coreceptor CCR5, used by the vast majority of primary HIV-1 isolates, is considered a primary target molecule. RANTES and its derivatives are the most suitable protein-based compounds to fight HIV-1 via CCR5 targeting. Yet, receptor activation should be avoided to prevent pro-inflammatory effects and possibly provide anti-inflammatory properties. C1C5 RANTES is a chemokine mutant that exhibits high anti-HIV-1 potency coupled with CCR5 antagonism. However, the need for the formation of an N-terminal intramolecular disulfide bridge between non-natural cysteine residues at positions 1 and 5 represents a challenge for the correct folding of this protein in recombinant expression systems, a crucial step towards its development as a microbicide against HIV-1. We report here a rare case of superior folding in a prokaryote as compared to an eukaryotic expression system. Production of C1C5 RANTES was highly impaired in CHO cells, with a dramatic yield reduction compared to that of wild type RANTES and secretion of the molecule as disulfide-linked dimer. Conversely, a human vaginal isolate of Lactobacillus jensenii engineered to secrete C1C5 RANTES provided efficient delivery of the monomeric protein. This and other reports on successful secretion of complex proteins indicate that lactic acid bacteria are an excellent system for the expression of therapeutic proteins, which can be used as a platform for the engineering of conceptually novel RANTES mutants with potent anti-HIV-1 activity.  相似文献   

4.
Background and aims: Recently we reported on a genetically predisposed protection from C-reactive protein (CRP) related mortality in dialysis patients carrying the functional CC-chemokine receptor 5 deletion 32 allele (CCR5Δ32) mutation. Since CCR5Δ32 is associated with a less pro-inflammatory immune response in mice, we hypothesized that the observed protection is (in part) due to a less pro-inflammatory cytokine profile. Methods: Cross-sectional observational study including 263 incident dialysis patients aged 18–70 years, without clinical signs of infection and/or acute vasculitis. TNF-α, IL-6, IL-10 and hsCRP levels were determined and studied in relation to the CCR5 genotype. Results: In the presence of elevated hsCRP, IL-6 concentration was higher irrespective of the CCR5 genotype. However, in patients with the CCR5 deletion, TNF-α did not differ in the presence/absence of elevated hsCRP and was not correlated with hsCRP levels in carriers of the CCR5Δ32 polymorphism. Conclusions: A possible underlying mechanism of the impact of CCR5Δ32 genotype on inflammation driven mortality in dialysis patients could be a reduced Th1 immune response as represented by decreased TNF-α levels.  相似文献   

5.
The inflammatory bowel diseases (IBD) Crohn's disease (CD) and ulcerative colitis (UC) are complex multifactorial traits involving both environmental and genetic factors. Recent studies have shown the important role of pro-inflammatory cytokines and chemokines, including RANTES, in IBD. RANTES is the natural ligand for the CC-chemokine receptor 5 (CCR5). The chromosomal location of the CCR5 gene on 3p21 coincides with an IBD-susceptibility locus identified by genome-wide scanning. A 32-bp deletion (A32) in the CCR5 gene results in a nonfunctional receptor and is found with high frequency in Caucasians. In this study, we investigated the presence of the CCR5delta32 allele in a large cohort of IBD patients and in a healthy control population. Blood samples were obtained from 538 unselected IBD cases (433 unrelated IBD patients: 289 CD, 142 UC, 2 indeterminate colitis; 105 affected first-degree relatives) and 135 unaffected first-degree family members. Of the IBD patients, 36% had familial IBD with at least two members being affected. There were no significant differences in the CCR5delta32 mutation frequency between IBD patients and healthy controls, nor between CD and UC patients. There was no correlation between the CCR5delta32 genotype and the age at IBD-diagnosis, the frequency of surgical intervention, or disease localization. Only the association between CCR5delta32 homozygosity and the presence of anal lesions in CD patients was statistically significant (P=0.007). Analysis by the transmission/disequilibrium test showed no significant transmission distortion to the probands or their clinically silent siblings. Based on these results, it is unlikely that the CCR5delta32 allele is an important marker for predisposition to IBD.  相似文献   

6.
It is believed that proteoglycans influence biological properties of chemokines. We show that the CC chemokine RANTES binds not only to high-affinity binding sites on CCR5-positive HeLa cells but also to low-affinity binding sites on HeLa cells expressing or lacking RANTES G protein-coupled receptors. Coimmunoprecipitation studies demonstrate that RANTES forms complexes with glycanated syndecan (SD)-1 and -4, in addition to CCR5 on the CCR5-positive HeLa cells. Moreover, confocal microscopy analysis shows the colocalization of RANTES with SD-1 and -4. Glycosaminoglycans removal from the cells by glycosaminidases treatment prevented RANTES binding to SD-1 and -4 and decreased RANTES binding to CCR5 on the CCR5-positive HeLa cells. Removal of glycosaminoglycans by glycosaminidases treatment of the complexes, RANTES/SD-1/SD-4/+/-CCR5, immobilized on beads, reversed SD-1 and -4 bindings. Therefore, RANTES bindings to SD-1 and -4 depend on glycosaminoglycans and facilitate RANTES interaction with CCR5. Extracting plasma membrane cholesterol abolished the coimmunoprecipitation of SD-1 with RANTES, suggesting that rafts are involved in RANTES association to SD-1. Confocal microscopy analysis as well as coimmunoprecipitation experiments show a RANTES-independent heteromeric complex on the CCR5-positive HeLa cells, SD-1, SD-4, and CCR5. This complex is likely a functional unit in which proteoglycans may modulate RANTES binding to CCR5.  相似文献   

7.
Yang JY  Togni M  Widmer U 《Cytokine》1999,11(1):1-7
CC chemokine receptor 5 (CCR5) is a cell entry cofactor for macrophage-tropic isolates of human immunodeficiency virus 1 (HIV-1). An inactive CCR5 allele with a 32-nucleotide deletion (CCR5Delta32) has been described that confers resistance to HIV-1 infection in homozygotes and slows the rate of progression to AIDS in heterozygotes. We found the allele CCR5Delta32 to be not rare in 399 Swiss blood donors with a frequency of 0.080. To assess the influence of defective CCR5 on production of its ligands we determined the capacity to produce the chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES in comparison with the production of the CXC chemokine IL-8 which does not bind to CCR5. Production of chemokines was determined during endotoxin stimulation of whole-blood samples ex vivo. Both, basal and LPS-induced chemokine production in 32 blood donors heterozygous for CCR5Delta32 were not significantly different when compared with 55 blood donors who were homozygous for the wild type CCR5 allele.  相似文献   

8.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

9.
Chemokines mediate their biological activity through activation of G protein coupled receptors, but most chemokines, including RANTES, are also able to bind glycosaminoglycans (GAGs). Here, we have investigated, by site-directed mutagenesis and chemical acetylation, the role of RANTES basic residues in the interaction with GAGs using surface plasmon resonance kinetic analysis. Our results indicate that (i) RANTES exhibited selectivity in GAGs binding with highest affinity (K(d) = 32.1 nM) for heparin, (ii) RANTES uses the side chains of residues R44, K45, and R47 for heparin binding, and blocking these residues in combination abolished heparin binding. The biological relevance of RANTES-GAGs interaction was investigated in CHO-K1 cells expressing CCR5, CCR1, or CCR3 and the various GAGs that bind RANTES. Our results indicate that the heparin binding site, defined as the 40s loop, is only marginally involved in CCR5 binding and activation, but largely overlaps the CCR1 and CCR3 binding and activation domain in RANTES. In addition, enzymatic removal of cell surface GAGs by glycosidases did not affect CCR5 binding and Ca(2+) response. Furthermore, addition of soluble GAGs inhibited both CCR5 binding and functional response, with a rank of potency similar to that found in surface plasmon resonance experiments. Thus, cell surface GAGs is not a prerequisite for receptor binding or signaling, but soluble GAGs can inhibit the binding and the functional response of RANTES to CCR5 expressing cells. However, the marked selectivity of RANTES for different GAGs may serve, in vivo, to control the concentration of specific chemokines in inflammatory situations and locations.  相似文献   

10.

Background

Gene polymorphisms of the chemokine receptors CCR2 and CCR5 (CCR2V64I, CCR5-59029G>A and CCR5Δ32) have been shown to be associated with renal allograft rejection. The aim of this study was to investigate the association of these polymorphisms with allograft rejection among Pakistani transplant patients.

Method

A total of 606 renal transplant patients and an equal number of their donors were included in this study. DNA samples were used to amplify polymorphic regions of CCR2V64I, CCR5-59029G>A and CCR5Δ32 by polymerase chain reaction using sequence specific primers. The amplified products of CCRV64I and CCR5-59029G>A were digested with restriction enzymes (BsaB1 and Bsp12861) respectively. The CCR5Δ32 genotypes were determined by sizing the PCR amplicons. The association of these polymorphisms with the biopsy proven rejection and other clinical parameters was evaluated using the statistical software SPSS v.17.

Results

In this study, the G/G genotype of CCR2V64I was associated with a high frequency of allograft rejection (p = 0.009; OR = 2.14; 95% CI = 1.2–3.7). Rejection episode(s) in the GA + AA genotypes were found to be significantly lower as compared to the GG genotype (p = 0.009; OR = 0.4; 95% CI = 0.2–0.8). The Kaplan–Meier curve also indicated a reduced overall allograft survival for patients with the G/G genotype of CCR2V64I (59.2 ± 1.4 weeks, log p = 0.008). There was a significant association with rejection by female donors possessing the CCR2 GG genotype (p = 0.02; OR = 2.6; CI = 1.1–6.3) and male donors with the CCR5-59029 GG genotype (p = 0.004; OR = 1.7; CI = 1.03–3.01).

Conclusion

This study shows an association of the CCR2V64I (G/G) genotype with renal allograft rejection. However, no such association was found for the CCR5 gene polymorphisms. Therapeutic interventions such as blocking the CCR2 receptor (especially G polymorphism) may yield better survival of renal allograft in this patient group. Further, chemokine receptors may be added to the spectrum of the immunogenetic factors that are known to be associated with renal allograft rejection.  相似文献   

11.
Endocytosis and recycling of the HIV coreceptor CCR5   总被引:13,自引:0,他引:13  
The chemokine receptor CCR5 is a cofactor for the entry of R5 tropic strains of human immunodeficiency viruses (HIV)-1 and -2 and simian immunodeficiency virus. Cells susceptible to infection by these viruses can be protected by treatment with the CCR5 ligands regulated on activation, normal T cell expressed and secreted (RANTES), MIP-1alpha, and MIP-1beta. A major component of the mechanism through which chemokines protect cells from HIV infection is by inducing endocytosis of the chemokine receptor. Aminooxypentane (AOP)-RANTES, an NH(2)-terminal modified form of RANTES, is a potent inhibitor of infection by R5 HIV strains. AOP-RANTES efficiently downmodulates the cell surface expression of CCR5 and, in contrast with RANTES, appears to prevent recycling of CCR5 to the cell surface. Here, we investigate the cellular basis of this effect.Using CHO cells expressing human CCR5, we show that both RANTES and AOP-RANTES induce rapid internalization of CCR5. In the absence of ligand, CCR5 shows constitutive turnover with a half-time of 6-9 h. Addition of RANTES or AOP-RANTES has little effect on the rate of CCR5 turnover. Immunofluorescence and immunoelectron microscopy show that most of the CCR5 internalized after RANTES or AOP-RANTES treatment accumulates in small membrane-bound vesicles and tubules clustered in the perinuclear region of the cell. Colocalization with transferrin receptors in the same clusters of vesicles indicates that CCR5 accumulates in recycling endosomes. After the removal of RANTES, internalized CCR5 recycles to the cell surface and is sensitive to further rounds of RANTES-induced endocytosis. In contrast, after the removal of AOP-RANTES, most CCR5 remains intracellular. We show that these CCR5 molecules do recycle to the cell surface, with kinetics equivalent to those of receptors in RANTES-treated cells. However, these recycled CCR5 molecules are rapidly reinternalized. Our results indicate that AOP-RANTES-induced changes in CCR5 alter the steady-state distribution of the receptor and provide the first evidence for G protein-coupled receptor trafficking through the recycling endosome compartment.  相似文献   

12.
CCR5 is a chemokine receptor used by HIV-1 to enter cells and has recently been found to act as a pathogen associated molecule pattern receptor. Current positive selection for the high frequency of a CCR5-Delta32 allele in humans has been attributed to resistance to HIV, smallpox, and plague infections. Using an intranasal mouse model of Y. pestis infection, we have found that lack of CCR5 does not enhance host resistance to Y. pestis infection and that CCR5-mediated responses might have a protective role. CCR5-/- mice exhibited higher levels of circulating RANTES and MIP-1alpha than those exhibited by wild-type mice at the baseline and throughout the course of Y. pestis infection. High levels of RANTES and MIP-1alpha, which are CCR5 ligands that mediate Natural Killer cell migration, may reflect compensation for the absence of CCR5 signaling.  相似文献   

13.
Genetic susceptibility to HIV infection was previously proven to be influenced by some chemokine receptor polymorphisms clustering on chromosome 3p21. Here the influence of 5 genetic variants was studied: Δ32CCR5, G(-2459)ACCR5, G190ACCR2, G744ACX3CR1 and C838TCX3CR1. They were screened in a cohort of 168 HIV-1 positive adults [HIV(+) group] and 151 newborns [control group] from northwestern Poland. PCR-RFLP was performed to screen for the variants (except for A32CCR5 polymorphism, where PCR fragment size was sufficient to identify the alleles) and then electrophoresed on agarose gel to determine fragment size. Distribution of genotypes and alleles was not significantly different between the groups except for theCCR5 polymorphisms, with the A32 allele and the (-2459)ACCR5 allele more frequent among neonates than in the HIV(+) group. No Δ32/Δ32 homozygotes were found in the HIV(+) group, but 16.1% were Δ32/wt heterozygotes. In the control group, 1.3% were Δ32/Δ32 homozygotes and 26.0% were Δ32/wt heterozygotes. Linkage between the chemokine polymorphisms was calculated using the most informative loci for haplotype reconstruction. Haplotypes containing Δ32 CCR5,190GCCR2 and 744ACX3CR1 were found to be significantly more common in the control group. This suggests an association between these haplotypes and resistance to HIV-1 infection.  相似文献   

14.
Yang B  Houlberg K  Millward A  Demaine A 《Cytokine》2004,26(3):114-121
Cytokines and chemokines have been implicated in the pathogenesis of Type 1 diabetes mellitus (T1DM) and its microvascular complications. Recently, genetic variants of monocyte chemotactic protein-1 (MCP-1), CC-chemokine receptor 2 (CCR2), CC-chemokine receptor 5 (CCR5) genes have been identified. The aim was to investigate whether genetic variants of the MCP-1 G(-2518)A, CCR2B 64I, CCR5 G(59029)A, and CCR5 Delta32 are associated with T1DM and its microvascular complications. Two hundred and sixty patients with T1DM with and without diabetic microvascular complications, and 104 normal controls were recruited for this study. Genotypes of the MCP-1 G(-2518)A, CCR2B 64I, CCR5 G(59029)A, and CCR5 delta32 were performed by polymerase chain reaction followed by digestion with appropriate restriction endonucleases. Frequencies of the MCP-1 A(-2518) allele (74.6% vs. 63.5%, p < 0.003) and A/A genotype (54.5% vs. 34.6%, p < 0.001, Pc = 0.002) were significantly higher in patients with T1DM compared with normal controls. CCR5 G(59029) was slightly increased in the patients with microvascular complications compared with the uncomplicated (21.4% vs. 10%, p < 0.03, Pc = ns). The frequency of haplotype G/G/W was slightly increased in the patients with diabetic complications compared to the uncomplicated (39.6% vs. 28.8%, p < 0.02, Pc = ns). These results suggest that polymorphisms of the MCP-1, CCR2 and CCR5 genes may be associated with T1DM and its complications.  相似文献   

15.
The CCR5-Delta32 deletion obliterates the CCR5 chemokine and the human immunodeficiency virus (HIV)-1 coreceptor on lymphoid cells, leading to strong resistance against HIV-1 infection and AIDS. A genotype survey of 4,166 individuals revealed a cline of CCR5-Delta32 allele frequencies of 0%-14% across Eurasia, whereas the variant is absent among native African, American Indian, and East Asian ethnic groups. Haplotype analysis of 192 Caucasian chromosomes revealed strong linkage disequilibrium between CCR5 and two microsatellite loci. By use of coalescence theory to interpret modern haplotype genealogy, we estimate the origin of the CCR5-Delta32-containing ancestral haplotype to be approximately 700 years ago, with an estimated range of 275-1,875 years. The geographic cline of CCR5-Delta32 frequencies and its recent emergence are consistent with a historic strong selective event (e.g. , an epidemic of a pathogen that, like HIV-1, utilizes CCR5), driving its frequency upward in ancestral Caucasian populations.  相似文献   

16.
Chemokine receptor CCR5 is not only essential for chemotaxis of leukocytes but also has been shown to be a key coreceptor for HIV-1 infection. In the present study, hemagglutinin epitope-tagged human CCR5 receptor was stably expressed in Chinese hamster ovary cells or transiently expressed in NG108–15 cells to investigate CCR5-mediated signaling events. The surface expression of CCR5 was confirmed by flow cytometry analysis. The CCR5 agonist RANTES stimulated [35S]GTPγS binding to the cell membranes and induced inhibition on adenylyl cyclase activity in cells expressing CCR5. The effects of RANTES were CCR5 dependent and could be blocked by pertussis toxin. Furthermore, overexpression of Giα2 strongly increased both RANTES-dependent G-protein activation and inhibition on adenylyl cyclase in cells cotransfected with CCR5. These data demonstrated directly that activation of CCR5 stimulated membrane-associated inhibitory G proteins and indicated that CCR5 could functionally couple to G-protein subtype Giα2. The abilities of CCR5 to activate G protein and to inhibit cellular cAMP accumulation were significantly diminished after a brief prechallenge with RANTES, showing rapid desensitization of the receptor-mediated responsiveness. Prolonged exposure of the cells to RANTES caused significant reduction of surface CCR5 as measured by flow cytometry, indicative of agonist-dependent receptor internalization. Our data thus demonstrated that CCR5 functionally couples to membrane-associated inhibitory G proteins and undergoes agonist-dependent desensitization and internalization. J. Cell. Biochem. 71:36–45, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
We recently demonstrated that RANTES forms complexes with CCR5, syndecan-1 (SD-1), SD-4, and CD44 expressed by human primary macrophages and that SD-1 and SD-4 but neither CD44 nor SD-2 coimmunoprecipitate with CCR5. Here we show that RANTES directly binds in a glycosaminoglycan-dependent manner to SD-1, SD-4, and CD44. Moreover, RANTES accelerates the shedding of SD-1 and SD-4 ectodomains from HeLa cells expressing CCR5 and, by contrast, has no effect on the constitutive shedding of CD44 from these cells. These accelerated sheddings are prevented by the MEK1/2 inhibitor, U0126, and by the protein kinase C inhibitor bisindolylmaleimide I. This indicates that both MAP kinase--and protein kinase C-dependent signaling pathways are involved in these RANTES-induced accelerated sheddings. RANTES also induces a decreased expression of SD-1 and SD-4 by HeLa cells expressing CCR5 and on the contrary an increased expression of CD44 by these cells. By contrast, RANTES neither accelerates the shedding of SD-1 and SD-4 ectodomains from HeLa cells lacking CCR5, nor changes the SD-1-, SD-4-, and CD44-plasma membrane expressions of these cells. CCR5 is therefore involved in the RANTES-induced accelerated shedding of SD-1 and SD-4 ectodomains. Nevertheless, the fact that RANTES stimulates in Hela cells (expressing or lacking CCR5) the mRNA synthesis of SD-1 and SD-4 indicates that the molecular events that follow the synthesis of these proteoglycans differ, according to the presence or not of CCR5. Finally, RANTES forms GAG-dependent complexes with the shed ectodomains of SD-1 and SD-4 as well as with those of CD44. The role of these events in the pathophysiology of RANTES deserves further study.  相似文献   

18.
Polymorphisms in genes that encode chemokines or their receptors can modulate susceptibility to human immunodeficiency virus (HIV) infection and disease progression. The objective of this study was to assess the frequency of polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A and their role in the course of HIV infection in a Southern Brazilian population. Clinical data were obtained from 249 patients for an average period of 6.4 years and genotypes were determined by standard polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. Survival analyses were conducted for three outcomes: CD4+ T-cell counts below 200 cells/μL, acquired immune deficiency syndrome (AIDS) or death. The frequency of the polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A were 0.024, 0.113, 0.487 and 0.207, respectively. CCR5-Δ32 was associated with a reduction in the risk for CD4+ T-cell depletion and with an increased risk for death after AIDS diagnosis. CCR2-64I was associated with a reduction in the risk for developing AIDS. SDF1-3'A was also associated with decreased risk for AIDS, but its effect was only evident when CCR2-64I was present as well. These results highlight the possibility of using these markers as indicators for the prognosis of disease progression and provide evidence for the importance of analysing the effects of gene polymorphisms in a combined fashion.  相似文献   

19.
Abstract

Objective: To explore whether the functional chemokine receptor 5 delta32 (CCR5-Δ32) polymorphism is associated with susceptibility to cancer. Methods: A meta-analysis was conducted on the association between the CCR5-Δ32 polymorphism and cancer using (i) allele contrast and (ii) the dominant model. Results: Thirteen articles, including 16 comparative studies on a total of 3087 patients and 3735 controls, were included in the meta-analysis. These studies encompassed breast cancer (n?=?3), bladder cancer (n?=?3), cervical cancer (n?=?2), pancreatic cancer (n?=?2), prostate cancer (n?=?2), head and neck cancer (n?=?2), lymphoma (n?=?1), gallbladder cancer (n?=?1), skin cancer (n?=?1) and mixed cancer (n?=?1). The meta-analysis revealed an association between cancer and the CCR5-Δ32 allele (OR?=?1.368, 95% CI?=?1.064–1.758, p?=?0.014), and stratification by ethnicity showed an association between the CCR5-Δ32 allele and cancer in Indians (OR?=?2.480, 95% CI?=?1.247–4.932, p?=?0.010). The meta-analysis also revealed an association between breast cancer and the CCR5-Δ32 allele (OR?=?1.689, 95% CI?=?1.012–2.821, p?=?0.045). However, allele contrast and the dominant model failed to reveal an association between the CCR5-Δ32 polymorphism and bladder cancer, cervical cancer, pancreatic cancer, prostate cancer, and head and neck cancer. Conclusions: This meta-analysis demonstrates that the CCR5-Δ32 polymorphism is associated with susceptibility to cancer in Indians and is associated with breast cancer.  相似文献   

20.
At the CC (beta) chemokine receptor 2 (CCR2) and CCR5 loci, combinations of common single-nucleotide polymorphisms (SNPs) and a 32-bp deletion (Delta32) form nine stable haplotypes (designated A through G*2). The distribution of these CCR2-CCR5 haplotypes was examined among 703 participants in the Multicenter AIDS Cohort Study (MACS), the District of Columbia Gay (DCG) Study, and the San Francisco Men's Health Study (SFMHS). Highly exposed and persistently seronegative (HEPS; n = 90) Caucasian men from MACS more frequently carried heterozygous G*2 (Delta32) genotypes (especially A/G*2) and less frequently carried the homozygous E/E genotype compared with 469 Caucasian seroconverters (SCs) from the same cohort (P = 0.004 to 0.042). Among 341 MACS Caucasian SCs with 6- to 12-month human immunodeficiency virus type 1 (HIV-1) seroconversion intervals and no potent antiretroviral therapy, mean plasma HIV-1 RNA level during the initial 42 months after seroconversion was higher in carriers of the E/E genotype and lower in those with the 64I-bearing haplotype F*2 or the Delta32-bearing haplotype G*2 (and especially genotypes A/G*2 and F*2/G*2). A multivariable model containing these CCR markers showed significant composite effects on HIV-1 RNA at each of four postconversion intervals (P = 0.0004 to 0.050). In other models using time to AIDS as the endpoint, the same markers showed more modest contributions (P = 0.08 to 0.24) to differential outcome during 11.5 years of follow-up. Broadly consistent findings in the larger MACS Caucasian SCs and the smaller groups of MACS African-American SCs and the DCG and SFMHS Caucasian SCs indicate that specific CCR2-CCR5 haplotypes or genotypes mediate initial acquisition of HIV-1 infection, early host-virus equilibration, and subsequent pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号