首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PCTAIRE-1 is a member of the cyclin-dependent kinase (cdk)-like class of proteins, and is localized mainly in the mammalian brain. Using the yeast two-hybrid system we screened a mouse brain cDNA library with PCTAIRE-1 as bait, and isolated several clones coding for the mouse homologs of the following proteins: p11 (also known as calpactin I light chain) and the η, θ (also known asτ) and ζ isoforms of 14-3-3 proteins. We confirmed that these four proteins interact with PCTAIRE-1 by demonstrating the biochemical interactions using the pure recombinant proteins. The fact that 14-3-3 proteins are known to interact with many other intracellular proteins (such as C-kinase, Raf, Bcr, PI3-kinase) and p11 with annexin II (a major pp60v-src and C-kinase substrate) suggests that PCTAIRE-1 might be part of multiple signal transduction cascades and cellular protein networks. Received: 23 September 1996 / Accepted: 10 January 1997  相似文献   

2.
14-3-3 proteins via binding serine/threonine-phosphorylated proteins regulate diverse intracellular processes in all eukaryotic organisms. Here, we examine the role of 14-3-3 self-dimerization in target binding, and in the susceptibility of 14-3-3 to undergo phosphorylation. Using a phospho-specific antibody developed against a degenerated mode-1 14-3-3 binding motif (RSxpSxP), we demonstrate that most of the 14-3-3-associated proteins in COS-7 cells are phosphorylated on sites that react with this antibody. The binding of these phosphoproteins depends on 14-3-3 dimerization, inasmuch as proteins associated in vivo with a monomeric 14-3-3 form are not recognized by the phospho-specific antibody. The role of 14-3-3 dimerization in the phosphorylation-dependent target binding is further exemplified with two well-defined 14-3-3 targets, Raf and DAF-16. Raf and DAF-16 can bind both monomeric and dimeric 14-3-3; however, whereas phosphorylation of specific Raf and DAF-16 sites is required for binding to dimeric 14-3-3, binding to monomeric 14-3-3 forms is entirely independent of Raf and DAF-16 phosphorylation. We also find that dimerization diminishes 14-3-3 susceptibility to phosphorylation. These findings establish a significant role of 14-3-3 dimerization in its ability to bind targets in a phosphorylation-dependent manner and point to a mechanism in which 14-3-3 phosphorylation and dimerization counterregulate each other.  相似文献   

3.
Chlamydiae replicate intracellularly within a vacuole that is modified early in infection to become fusogenic with a subset of exocytic vesicles. We have recently identified four chlamydial inclusion membrane proteins, IncD-G, whose expression is detected within the first 2 h after internalization. To gain a better understanding of how these Inc proteins function, a yeast two-hybrid screen was employed to identify interacting host proteins. One protein, 14-3-3beta, was identified that interacted specifically with IncG. The interaction between 14-3-3beta and IncG was confirmed in infected HeLa cells by indirect immunofluorescence microscopy and interaction with a GFP-14-3-3beta fusion protein. 14-3-3 proteins are phosphoserine-binding proteins. Immunoprecipitation studies with [32P]-orthophosphate-labelled cells demonstrated that IncG is phosphorylated in both chlamydia-infected HeLa cells and in yeast cells expressing IncG. Site-directed mutagenesis of predicted 14-3-3 phosphorylation sites demonstrated that IncG binds to 14-3-3beta via a conserved 14-3-3-binding motif (RS164RS166F). Finally, indirect immunofluorescence demonstrated that 14-3-3beta interacts with Chlamydia trachomatis inclusions but not C. psittaci or C. pneumoniae inclusions. 14-3-3beta is the first eukaryotic protein found to interact with the chlamydial inclusion; however, its unique role in C. trachomatis pathogenesis remains to be determined.  相似文献   

4.
The 14-3-3 proteins associate with many cellular proteins that participate in the regulation of various cellular events including apoptosis, the cell cycle, spreading, and migration. We have previously described that 14-3-3beta binds the beta1-integrin and overexpression of 14-3-3beta promoted increased cell spreading and migration (Han et al. [2001] Oncogene 20: 346-357). In this study, we find that mutation of Ser 60 of 14-3-3beta, outside of the amphipathic groove which is involved in 14-3-3 protein interactions with other ligands, abolished its interaction with integrin. Surprisingly, this mutant retained its ability to promote cell spreading, suggesting that 14-3-3beta interaction with the beta1-integrin is not required for its regulation of cell adhesion. We next showed that mutations of several critical residues in the amphipathic groove did not affect 14-3-3beta interaction with the beta1-integrin. As expected, these mutants disrupted their association with the phosphoserine dependent ligands Raf and Cas. Analysis of the groove mutant LF (mutation of Arg129Tyr130 to Leu and Phe) indicated that, unlike wild type 14-3-3beta, it could not stimulate cell spreading or migration, suggesting that a functional amphipathic groove is required for 14-3-3 regulation of cell adhesion and migration. Consistent with this, cells expressing the LF mutant exhibited a delay in F-actin organization compared to cells expressing wild type or the S60A mutant (Ser 60 to Ala mutation) upon cell adhesion to fibronectin (FN). Taken together, these studies identified a novel binding site on 14-3-3 for integrin beta1 and showed that a functional amphipathic groove, rather than its interaction with integrin beta1, is required for 14-3-3 regulation of cell spreading and migration.  相似文献   

5.
14-3-3 proteins bind their targets through a specific serine/threonine-phosphorylated motif present on the target protein. This binding is a crucial step in the phosphorylation-dependent regulation of various key proteins involved in signal transduction and cell cycle control. We report that treatment of COS-7 cells with the phosphatase inhibitor calyculin A induces association of 14-3-3 with a 55-kDa protein, identified as the intermediate filament protein vimentin. Association of vimentin with 14-3-3 depends on vimentin phosphorylation and requires the phosphopeptide-binding domain of 14-3-3. The region necessary for binding to 14-3-3 is confined to the vimentin amino-terminal head domain (amino acids 1-96). Monomeric forms of 14-3-3 do not bind vimentin in vivo or in vitro, indicating that a stable complex requires the binding of a 14-3-3 dimer to two sites on a single vimentin polypeptide. The calyculin A-induced association of vimentin with 14-3-3 in vivo results in the displacement of most other 14-3-3 partners, including the protooncogene Raf, which nevertheless remain capable of binding 14-3-3 in vitro. Concomitant with 14-3-3 displacement, calyculin A treatment blocks Raf activation by EGF; however, this inhibition is completely overcome by 14-3-3 overexpression in vivo or by the addition of prokaryotic recombinant 14-3-3 in vitro. Thus, phosphovimentin, by sequestering 14-3-3 and limiting its availability to other target proteins can affect intracellular signaling processes that require 14-3-3.  相似文献   

6.
7.
8.
Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors   总被引:2,自引:0,他引:2  
Schistosoma mansoni receptor kinase-1 (SmRK1) is a divergent type I transforming growth factor beta (TGFbeta) receptor on the surface of adult parasites. Using the intracellular domain of SmRK1 as bait in a yeast two-hybrid screen we identified an interaction with S. mansoni 14-3-3epsilon. The interaction which is phosphorylation-dependent is not specific to schistosomes since 14-3-3epsilon also binds to TbetaRI, the human type I TGFbeta receptor. 14-3-3epsilon enhances TGFbeta-mediated signaling by TbetaRI and is the first TbetaRI-interacting non-Smad protein identified that positively regulates this receptor. The interaction of 14-3-3epsilon with schistosome and human TbetaRI suggests a conserved, but previously unappreciated, role for this protein in TGFbeta signaling pathways.  相似文献   

9.
10.
In mammalian brain, tau, glycogen synthase kinase 3beta (GSK3beta), and 14-3-3, a phosphoserine-binding protein, are parts of a multiprotein tau phosphorylation complex. Within the complex, 14-3-3 simultaneously binds to tau and GSK3beta (Agarwal-Mawal, A., Qureshi, H. Y., Cafferty, P. W., Yuan, Z., Han, D., Lin, R., and Paudel, H. K. (2003) J. Biol. Chem. 278, 12722-12728). The molecular mechanism by which 14-3-3 connects GSK3beta to tau within the complex is not clear. In this study, we find that GSK3beta within the tau phosphorylation complex is phosphorylated on Ser(9). From extracts of rat brain and rat primary cultured neurons, Ser(9)-phosphorylated GSK3beta precipitates with glutathione-agarose beads coated with glutathione S-transferase-14-3-3. Similarly, from rat brain extract, Ser(9)-phosphorylated GSK3beta co-immunoprecipitates with tau. In vitro, 14-3-3 binds to GSK3beta only when the kinase is phosphorylated on Ser(9). In transfected HEK-293 cells, 14-3-3 binds to Ser(9)-phosphorylated GSK3beta and does not bind to GSK3beta (S9A). Tau, on the other hand, binds to both GSK3beta (WT) and GSK3beta (S9A). Moreover, 14-3-3 enhances the binding of tau with Ser(9)-phosphorylated GSK3beta by approximately 3-fold but not with GSK3beta (S9A). Similarly, 14-3-3 stimulates phosphorylation of tau by Ser(9)-phosphorylated GSK3beta but not by GSK3beta (S9A). In transfected HEK-293 cells, Ser(9) phosphorylation suppresses GSK3beta-catalyzed tau phosphorylation in the absence of 14-3-3. In the presence of 14-3-3, however, Ser(9)-phosphorylated GSK3beta remains active and phosphorylates tau. Our data indicate that within the tau phosphorylation complex, 14-3-3 connects Ser(9)-phosphorylated GSK3beta to tau and Ser(9)-phosphorylated GSK3beta phosphorylates tau.  相似文献   

11.
p90 ribosomal S6 kinase 1 (RSK1) is a serine/threonine kinase that is activated by extracellular signal-related kinases 1/2 and phosphoinositide-dependent protein kinase 1 upon mitogen stimulation. Under basal conditions, RSK1 is located in the cytosol and upon stimulation, RSK1 translocates to the plasma membrane where it is fully activated. The ability of RSK1 to bind the adapter protein 14-3-3beta was investigated because RSK1 contains several putative 14-3-3-binding motifs. We demonstrate that RSK1 specifically and directly binds 14-3-3beta. This interaction was dependent on phosphorylation of serine 154 within the motif RLSKEV of RSK1. Binding of RSK1 to 14-3-3beta was maximal under basal conditions and decreased significantly upon mitogen stimulation. After 5 min of serum stimulation, a portion of 14-3-3beta and RSK1 translocated to the membrane fraction, and immunofluorescence studies demonstrated colocalization of RSK1 and 14-3-3beta at the plasma membrane in vivo. Incubation of recombinant RSK1 with 14-3-3beta decreased RSK1 kinase activity by approximately 50%. Mutation of RSK1 serine 154 increased both basal and serum-stimulated RSK activity. In addition, the epidermal growth factor response of RSK1S154A was enhanced compared with wild type RSK. The amount of RSK1S154A was significantly increased in the membrane fraction under basal conditions. Increased phosphorylation of two sites essential for RSK1 kinase activity (Ser(380) and Ser(363)) in RSK1S154A compared with RSK1 wild type, demonstrated that 14-3-3 interferes with RSK1 phosphorylation. These data suggest that 14-3-3beta binding negatively regulates RSK1 activity to maintain signal specificity and that association/dissociation of the 14-3-3beta-RSK1 complex is likely to be important for mitogen-mediated RSK1 activation.  相似文献   

12.
Global regulation of spindle-associated proteins is crucial in oocytes due to the absence of centrosomes and their very large cytoplasmic volume, but little is known about how this is achieved beyond involvement of the Ran-importin pathway. We previously uncovered a novel regulatory mechanism in Drosophila oocytes, in which the phospho-docking protein 14-3-3 suppresses microtubule binding of Kinesin-14/Ncd away from chromosomes. Here we report systematic identification of microtubule-associated proteins regulated by 14-3-3 from Drosophila oocytes. Proteins from ovary extract were co-sedimented with microtubules in the presence or absence of a 14-3-3 inhibitor. Through quantitative mass-spectrometry, we identified proteins or complexes whose ability to bind microtubules is suppressed by 14-3-3, including the chromosomal passenger complex (CPC), the centralspindlin complex and Kinesin-14/Ncd. We showed that 14-3-3 binds to the disordered region of Borealin, and this binding is regulated differentially by two phosphorylations on Borealin. Mutations at these two phospho-sites compromised normal Borealin localisation and centromere bi-orientation in oocytes, showing that phospho-regulation of 14-3-3 binding is important for Borealin localisation and function.  相似文献   

13.
14-3-3 proteins in neuronal development and function   总被引:20,自引:0,他引:20  
The 14-3-3 proteins are small, cytosolic, evolutionaritly conserved proteins expressed abundantly in the nervous system. Although they were discovered more than 30 yr ago, their function in the nervous system has remained enigmatic. Several recent studies have helped to clarify their biological function. Crystallographic investigations have revealed that 14-3-3 proteins exist as dimers and that they contain a specific region for binding to other proteins. The interacting proteins, in turn, contain a 14-3-3 binding motif; proteins that interact with 14-3-3 dimers include PKC and Raf, protein kinases with critical roles in neuronal signaling. These proteins are capable of activating Raf in vitro, and this role has been verified by in vivo studies inDrosophila. Most interestingly, mutations in theDrosophila 14-3-3 genes disrupt neuronal differentiation, synaptic plasticity, and behavioral plasticity, establishing a role for these proteins in the development and function of the nervous system.  相似文献   

14.
Myeloid leukaemia factor 1 (MLF1) binds to 14-3-3 adapter proteins by a sequence surrounding Ser34 with the functional consequences of this interaction largely unknown. We present here the high-resolution crystal structure of this binding motif [MLF1(29-42)pSer34] in complex with 14-3-3ε and analyse the interaction with isothermal titration calorimetry. Fragment-based ligand discovery employing crystals of the binary 14-3-3ε/MLF1(29-42)pSer34 complex was used to identify a molecule that binds to the interface rim of the two proteins, potentially representing the starting point for the development of a small molecule that stabilizes the MLF1/14-3-3 protein-protein interaction. Such a compound might be used as a chemical biology tool to further analyse the 14-3-3/MLF1 interaction without the use of genetic methods. Database Structural data are available in the Protein Data Bank under the accession number(s) 3UAL [14-3-3ε/MLF1(29-42)pSer34 complex] and 3UBW [14-3-3ε/MLF1(29-42)pSer34/3-pyrrolidinol complex] Structured digital abstract ? 14-3-3 epsilon?and?MLF1?bind?by?x-ray crystallography?(View interaction) ? 14-3-3 epsilon?and?MLF1?bind?by?isothermal titration calorimetry?(View Interaction:?1,?2).  相似文献   

15.
Schistosoma mansoni receptor kinase 1 (SmRK1) is a divergent member of the TGF beta receptor family. Intracellular proteins that associate with these receptors are likely to play an important role in signaling. 14-3-3 epsilon is a previously described cytoplasmic protein, which associates with both SmRK1 and the human type I TGF beta receptor (T beta RI); overexpression of 14-3-3 epsilon leads to enhanced TGF beta-mediated signaling by T beta RI. We now describe the identification of S. mansoni eukaryotic translation initiation factor 2 alpha subunit (eIF2 alpha), through its interaction with SmRK1 in a yeast two-hybrid assay. S. mansoni eIF2 alpha also interacts with human TGF beta receptors. Strongest association was demonstrated with kinase inactive receptors, particularly the type II TGF beta receptor (T beta RII). Both T beta RI and T beta RII phosphorylate eIF2 alpha in vitro, at sites other than the previously described eIF2 alpha phosphorylation sites. EIF2 alpha also modulates signaling by TGF beta receptors; however, in contrast to 14-3-3 epsilon, eIF2 alpha overexpression inhibits the TGF beta-driven response. These data suggest a novel function for eIF2 alpha in the TGF beta signaling pathway. In addition, we have demonstrated an independent interaction between eIF2 alpha and 14-3-3 epsilon. Coexpression of 14-3-3 epsilon with eIF2 alpha leads to the abrogation of the inhibitory effect of eIF2 alpha on TGF beta-mediated signaling. The interaction of these two regulatory proteins with each other and with the TGF beta receptors and their relative expression levels are likely to be important in fine-tuning the regulation of TGF beta signal transduction.  相似文献   

16.
In a recent study, we reported that in bovine brain extract, glycogen synthase kinase-3beta and tau are parts of an approximately 400-500 kDa microtubule-associated tau phosphorylation complex (Sun, W., Qureshi, H. Y., Cafferty, P. W., Sobue, K., Agarwal-Mawal, A., Neufield, K. D., and Paudel, H. K. (2002) J. Biol. Chem. 277, 11933-11940). In this study, we find that when purified brain microtubules are subjected to Superose 12 gel filtration column chromatography, the dimeric scaffold protein 14-3-3 zeta co-elutes with the tau phosphorylation complex components tau and GSK3 beta. From gel filtration fractions containing the tau phosphorylation complex, 14-3-3 zeta, GSK3 beta, and tau co-immunoprecipitate with each other. From extracts of bovine brain, COS-7 cells, and HEK-293 cells transfected with GSK3 beta, 14-3-3 zeta co-precipitates with GSK3 beta, indicating that GSK3 beta binds to 14-3-3 zeta. From HEK-293 cells transfected with tau, GSK3 beta, and 14-3-3 zeta in different combinations, tau co-immunoprecipitates with GSK3 beta only in the presence of 14-3-3 zeta. In vitro, approximately 10-fold more tau binds to GSK3 beta in the presence of than in the absence of 14-3-3 zeta. In transfected HEK-293 cells, 14-3-3 zeta stimulates GSK3 beta-catalyzed tau phosphorylation in a dose-dependent manner. These data indicate that in brain, the 14-3-3 zeta dimer simultaneously binds and bridges tau and GSK3 beta and stimulates GSK3 beta-catalyzed tau phosphorylation.  相似文献   

17.
Regulation of gene expression at the level of mRNA stability is a major topic of research; however, knowledge about the regulatory mechanisms affecting the binding and function of AU-rich element (ARE)-binding proteins (AUBPs) in response to extracellular signals is minimal. The beta1,4-galactosyltransferase 1 (beta4GalT1) gene enabled us to study the mechanisms involved in binding of tristetraprolin (TTP) as the stability of its mRNA is regulated solely through one ARE bound by TTP in resting human umbilical vein endothelial cells. Here, we provide evidence that the complex formation of TTP with 14-3-3beta is required to bind beta4GalT1 mRNA and promote its decay. Furthermore, upon tumor necrosis factor alpha stimulation, the activation of both Ikappabeta kinase and protein kinase Cdelta is involved in the phosphorylation of 14-3-3beta on two serine residues, paralleled by release of binding of TTP and 14-3-3beta from beta4GalT1 mRNA, nuclear sequestration of TTP, and beta4GalT1 mRNA stabilization. Thus, a key mechanism regulating mRNA binding and function of the destabilizing AUBP TTP involves the phosphorylation status of 14-3-3beta.  相似文献   

18.
Grb10 is a member of adapter proteins that are thought to play a role in receptor tyrosine kinase-mediated signal transduction. Grb10 expression levels can influence Akt activity, and Grb10 may act as an adapter involved in the relocalization of Akt to the cell membrane. Here we identified 14-3-3 as a binding partner of Grb10 by employing a yeast two-hybrid screen. The 14-3-3.Grb10 interaction requires phosphorylation of Grb10, and only the phosphorylated form of Grb10 co-immunoprecipitates with endogenous 14-3-3. We could identify a putative phosphorylation site in Grb10, which is located in a classical 14-3-3 binding motif, RSVSEN. Mutation of this site in Grb10 diminished binding to 14-3-3. Thus, Grb10 exists in two different states of phosphorylation and complexes with 14-3-3 when phosphorylated on serine 428. We provide evidence that Akt directly binds Grb10 and is able to phosphorylate Grb10 in an in vitro kinase assay. Based on these findings, we propose a regulatory circuitry involving a phosphorylation-regulated complex formation of Grb10 with 14-3-3 and Akt.  相似文献   

19.
The insulin receptor (IR) and the insulin-like growth factor receptor I (IGF-IR) have different functions in cell growth, apoptosis, differentation, and transformation. Although some of these differences may be explained by the relative level of receptor expression and receptor structure (alpha and beta subunits), they may also be attributed to differences in intracellular signals generated by insulin and IGF-I. The presence of hybrid receptors (IR alphabeta subunits and IGF-IR alphabeta subunits) making up the heterotetramers has added a new dimension to our understanding of the functional roles of these receptors. However, to date the results of efforts to understand the differences between these two closely related receptors have indicated mostly similarities. For example, both receptors utilize IRS-1/IRS-2 and Shc as immediate downstream adaptors, leading to activation of the Ras, Raf, ERK kinases and PI-3 kinase pathways. We have used the yeast two hybrid system to identify proteins which bind to the activated IGF-IR but not to the IR. The cytoplasmic domain of the IGF-IR was used to screen a human fetal brain library and two isoforms of the 14-3-3 family were identified. 14-3-3 proteins are a highly conserved family of proteins which have recently been shown to interact with other components of the mitogenic and apoptotic signaling pathways, including Raf, BAD, Bcr/Bcr-Abl, middle-T antigen, Ksr, PKC, PI-3 kinase, ASK1 kinase, and cdc25C phosphatase. We also identified human Grb10, an adaptor protein with SH2 domain associated with the IGF-IR beta subunit. Smith's laboratory showed that Grb10 preferentially binds to the IR in intact cells. Using the interaction trap screen (active cytoplasmic domain of the IGF-IR) 55PIK and SOCS-2 proteins were also identified. However, 55PIK and SOCS-2 also interact with the IR in the yeast two hybrid system. These studies raise the possibility that 14-3-3 and Grb10 may play a role in insulin and IGF-I signal transduction and may underlie the observed differences.  相似文献   

20.
Enteropathogenic Escherichia coli (EPEC) cause infantile diarrhoea and are characterized by their ability to produce attaching and effacing lesions on the surface of intestinal epithelial cells. EPEC employ a filamentous type III secretion system to deliver effector molecules that subvert mammalian cell function to generate actin- and cytokeratin-rich pedestals beneath adherent bacteria. Tir is a major effector protein that is delivered to the plasma membrane of the eukaryotic cell where it acts as the receptor for the bacterial adhesin intimin. Host cell proteins that are recruited to the site of intimate attachment include focal adhesion and cytoskeletal proteins that contribute to pedestal formation. We have used Tir as bait in a yeast two-hybrid screen to identify the protein 14-3-3tau as a binding partner. 14-3-3 proteins are a family of adaptor proteins that modulate protein function in all eukaryotic cells. Here we demonstrate that the tau isoform (also known as theta) of 14-3-3 can bind specifically to Tir in a phosphorylation-independent manner, and that the interaction occurs during the infection process by co-immunoprecipitation of the partners from infected HeLa cell extracts. 14-3-3tau is recruited to the site of the pedestal (3 h after infection) and can decorate attached EPEC in the later stages of the infection process (5-7 h). Pedestal formation can be impaired by depletion of cellular 14-3-3tau using small interfering RNAs. This study indicates a direct functional role for the 14-3-3tau:Tir interaction and is the first to demonstrate the association of a host protein with the surface of EPEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号