首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the importance of mitochondrial localization of the SOD2 (MnSOD) transgene product for protection of 32D cl 3 hematopoietic cells from radiation-induced killing. Four plasmids containing (1) the native human copper/zinc superoxide dismutase (Cu/ZnSOD, SOD1) transgene, (2) the native SOD2 transgene, (3), the SOD2 transgene minus the mitochondrial localization leader sequence (MnSOD-ML), and (4) the SOD2 mitochondrial leader sequence attached to the active portion of the SOD1 transgene (ML-Cu/ZnSOD) were transfected into 32D cl 3 cells and subclonal lines selected by kanamycin resistance. Clonogenic in vitro radiation survival curves derived for each cell clone showed that Cu/ZnSOD- and MnSOD-ML-expressing clones had no increase in cellular radiation resistance (D0=0.89 +/- 0.01 and 1.08 +/- 0.02 Gy, respectively) compared to parent line 32D cl 3 (D0=1.15 +/- 0.11 Gy). In contrast, cell clones expressing either SOD2 or ML-Cu/ZnSOD were significantly radioresistant (D0=2.1 +/- 0.1 and 1.97 +/- 0.17 Gy, respectively). Mice injected intraesophageally with SOD2-plasmid/liposome (MnSOD-PL) complex demonstrated significantly less esophagitis after 35 Gy compared to control irradiated mice or mice injected intraesophageally with Cu/ZnSOD-PL or MnSOD-ML-PL. Mice injected with intraesophageal ML-Cu/ZnSOD-PL showed significant radioprotection in one experiment. The data demonstrate the importance of mitochondrial localization of SOD in the in vitro and in vivo protection of cells from radiation-induced cellular damage.  相似文献   

2.
3.
The pulmonary ionizing radiation sensitivity of C57BL/6 Sod2(+/-) mice heterozygous for MnSOD deficiency was compared to that Sod2(+/+) control littermates. Embryo fibroblast cell lines from Sod2(-/-) (neonatal lethal) or Sod2(+/-) mice produced less biochemically active MnSOD and demonstrated a significantly greater in vitro radiosensitivity. No G(2)/M-phase cell cycle arrest after 5 Gy was observed in Sod2(-/-) cells compared to the Sod2(+/-) or Sod2(+/+) lines. Subclonal Sod2(-/-) or Sod2(+/-) embryo fibroblast lines expressing the human SOD2 transgene showed increased biochemical activity of MnSOD and radioresistance. Sod2(+/-) mice receiving 18 Gy whole-lung irradiation died sooner and had an increased percentage of lung with organizing alveolitis between 100 and 160 days compared to Sod2(+/+) wild-type littermates. Both Sod2(+/-) and Sod2(+/+) littermates injected intratracheally with human manganese superoxide dismutase-plasmid/liposome (SOD2-PL) complex 24 h prior to whole-lung irradiation showed decreased DNA strand breaks and improved survival with decreased organizing alveolitis. Thus underexpression of MnSOD in the lungs of heterozygous Sod2(+/-) knockout mice is associated with increased pulmonary radiation sensitivity and parallels increased radiation sensitivity of embryo fibroblast cell lines in vitro. The restoration of cellular radioresistance in vitro and in lungs in vivo by SOD2-PL transgene expression supports a potential role for SOD2-PL gene therapy in organ-specific radioprotection.  相似文献   

4.
We previously demonstrated that overexpression of HSP25 (now known as Hspb1) conferred increased resistance to ionizing radiation (Radiat Res. 154, 421-428, 2000). In the present study, L929 cells overexpressing Hspb1 were shown to have increased expression of the manganese superoxide dismutase gene (now known as SOD2) and its enzyme activity. To elucidate Hspb1-induced pathways leading to activation of these antioxidant enzymes, the production of the tumor necrosis factor alpha (Tnf) and interleukin 1 beta (Il1b) genes was examined. Increased expression of Tnf and Il1b resulting from Hspb1 overexpression was detected by RT-PCR. Increased activation of Nfkb (degradation of Ikb, a member of the Nfkb family) was also found in Hspb1-overexpressing cells. When treated with Tnf, Nfkb activation and SOD2 gene expression were increased more by Hspb1 overexpression. Moreover, transfection with the Hspb1 antisense gene abrogated all of the Hspb1-mediated phenomena. To further elucidate the exact relationship between induction of SOD2 and Nfkb activation, a dominant negative I-kBalpha (now known as Nfkb1a) construct was transfected into Hspb1-overexpressing cells. The dominant negative Nfkb1a inhibited Hspb1-mediated SOD2 gene expression. In addition, Hspb1-mediated radioresistance was blocked by dominant negative Nfkb1a transfection. When the SOD2 gene was transfected into L929 cells, a somewhat increased radioresistance was detected by a clonogenic survival assay compared to control cells. Hspb1 produced Tnf and Il1b and facilitated SOD2 gene expression through Nfkb activation, possibly resulting in Hspb1-mediated radioresistance.  相似文献   

5.
Retinoblastoma (RB) is a cancer of the retina which characteristically occurs in early childhood. Bilateral RB is an inherited form of this disease. Such patients are at greatly increased risk of subsequently developing second tumors in mesenchymal tissue, especially in areas exposed to ionizing radiation therapy. Fibroblasts from bilateral RB patients have been reported to be more sensitive than normal fibroblasts to the cytotoxic effects of ionizing radiation. Because xeroderma pigmentosum patients have a hereditary predisposition to UV-induced cancer and the cells of such patients are abnormally sensitive to the cytotoxic and mutagenic effects of UV radiation, we compared fibroblasts from 6 bilateral RB patients and 3 normal individuals for their sensitivity to the mutagenic effects of cobalt 60, using resistance to 6-thioguanine (TG) as the genetic marker. The results showed no statistically significant difference between the two types of cell lines. The slope of the weighted least squares line representing the frequency of TG-resistant cells induced in the RB populations as a function of dose was 17 +/- 6 (S.E.)/10(6) cells/Gy with an intercept of 0.09 Gy; that for the normal cells was 17 +/- 7/10(6) cells/Gy with an intercept of 0.14 Gy. We also compared 8 bilateral RB cell lines and 9 age-matched normal cell lines for their sensitivity to the cytotoxic effect of 60Co, using survival of colony-forming ability. The cloning efficiency of the unirradiated RB cell lines ranged from 22% to 76% with an average of 52%; that of the normal cell lines from 21% to 89% with an average of 64%. The results showed the RB cells were somewhat more sensitive than the normal cells. The mean D0 for the RB cell lines ranged from 0.99 +/- 0.01 (S.E.) to 1.69 +/- 0.04 Gy with a weighted average of 1.44 +/- 0.08 Gy; that of the normal cell lines ranged from 1.42 +/- 0.17 to 2.24 +/- 0.10 Gy, with a weighted average of 1.79 +/- 0.11 Gy. The difference in means was estimated to be 0.34 +/- 0.14. The mean for the RB cell lines is statistically significantly lower than the mean for the normal cell lines, at a significance level ca. 1%.  相似文献   

6.
Although AKT activation leads to the activation of various pathways related to cell survival, the roles of AKT in modulating cellular responses induced by ionizing radiation in normal human cells remain unclear. Here we show that low-dose radiation of 0.05 Gy did not affect cell death, but high-dose radiation (> 0.2 Gy) induced apoptosis through the activation of caspases and acinus cleavage. Ionizing radiation induced acinus phosphorylation via AKT activation. Thus, we examined the effect of AKT activation on radiation-induced cell death using CCD-18Lu cells transduced with a retroviral vector expressing constitutively active AKT (CA-AKT). The overexpression of CA-AKT rendered the cells resistant to ionizing radiation and prevented the proteolytic cleavage of acinus via phosphorylation. In addition, overexpression of CA-AKT resulted in the upregulation of acinus expression by activation of the NF-κB pathway. On the other hand, suppression of endogenous AKT expression by siRNA resulted in the reduction of acinus expression and enhanced the radiation-induced apoptosis in both CCD-18Lu and IM-9 cells. Our results suggest that AKT activation inhibits cell death during radiation-induced apoptosis through the regulation of phosphorylation and expression of acinus. The AKT/NF-κB/acinus pathway functions as one of the important regulatory mechanisms required for modulating ionizing radiation sensitivity.  相似文献   

7.
This study investigates the hypothesis that CuZn superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and the G(2)/M-checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell-cycle-phase distributions, and cyclin B1 expression. SOD1-overexpressing cells were radioresistant compared to wild-type (wt) and neo vector control (neo) cells. Irradiated wt and neo cells showed a significant increase (approximately twofold) in DHE fluorescence beginning at 2 days postirradiation, which remained elevated at 8 days postirradiation. Interestingly, the late accumulation of ROS was suppressed in irradiated SOD1-overexpressing cells. The increase in ROS levels was followed by a decrease in cell growth and viability and an increase in the percentage of cells with sub-G(1) DNA content. SOD1 overexpression enhanced radiation-induced G(2) accumulation within 24 h postirradiation, which was accompanied by a decrease in cyclin B1 mRNA and protein levels. These results support the hypothesis that long after radiation exposure a "metabolic redox response" regulates radiosensitivity of human glioma cells.  相似文献   

8.
Apoptosis in HeLa Hep2 cells is induced by low-dose,low-dose-rate radiation   总被引:5,自引:0,他引:5  
Radioimmunotherapy with radiolabeled antibodies may cause inhibition of the growth of epithelial tumors, despite low total radiation doses and comparatively low radiosensitivity of epithelial tumor cells. The induction of apoptosis by low-dose radiation, such as delivered in radioimmunotherapy, was investigated in vitro in human HeLa Hep2 carcinoma cells. The cultured cells were exposed to defined radiation doses from a (60)Co radiation therapy source. The radiation source delivered 0.80 +/- 0.032 (mean +/- SD) Gy/min and the cells were given total doses of 1, 2, 5, 10 and 15 Gy. Using fluorescein-labeled Annexin V, followed by flow cytometry and DNA ladder analysis, apoptotic cells were detected and quantified. Radiation doses below 2 Gy did not cause any significant increase in apoptosis. Compared to control cells, apoptosis was pronounced after 5-10 Gy irradiation and was correlated to the radiation dose, with up to 42 +/- 3.5% of the cells examined displaying apoptosis. Clonogenic assays confirmed significantly decreased viability of the cells in the interval 2 to 10 Gy with low-dose-rate radiation, 60 +/- 2% compared to 2 +/- 2%. Lethal effects on the tumor cells were also evaluated by an assay of the cytotoxic effects of the release of (51)Cr. Significant cytotoxicity, with up to 64 +/- 6% dead cells, was observed at 5 Gy. Similar results were obtained when the dose rate was reduced to 0.072 +/- 0.003 Gy/min (mean +/- SD). In the case of the (137)Cs source, the dose rate could be reduced to 0.045 Gy/h, a level comparable to radioimmunotherapy, which induced significant apoptosis, and was most pronounced at 72-168 h postirradiation. It can be concluded that in vitro low-dose and low-dose-rate radiation induces apoptosis in epithelial HeLa Hep2 cells and thus may explain a mechanism by which pronounced inhibition of growth of HeLa Hep2 tumors at doses used in radioimmunotherapy has been obtained previously.  相似文献   

9.
It has been hypothesized that ionizing radiation-induced disruptions in mitochondrial O? metabolism lead to persistent heritable increases in steady-state levels of intracellular superoxide (O?(?U+2212)) and hydrogen peroxide (H?O?) that contribute to the biological effects of radiation. Hamster fibroblasts (B9 cells) expressing a mutation in the gene coding for the mitochondrial electron transport chain protein succinate dehydrogenase subunit C (SDHC) demonstrate increases in steady-state levels of O??- and H?O?. When B9 cells were exposed to low-dose/low-LET radiation (5-50 cGy), they displayed significantly increased clonogenic cell killing compared with parental cells. Clones derived from B9 cells overexpressing a wild-type human SDHC (T4, T8) demonstrated significantly increased surviving fractions after exposure to 5-50 cGy relative to B9 vector controls. In addition, pretreatment with polyethylene glycol-conjugated CuZn superoxide dismutase and catalase as well as adenoviral-mediated overexpression of MnSOD and/or mitochondria-targeted catalase resulted in significantly increased survival of B9 cells exposed to 10 cGy ionizing radiation relative to vector controls. Adenoviral-mediated overexpression of either MnSOD or mitochondria-targeted catalase alone was equally as effective as when both were combined. These results show that mammalian cells over expressing mutations in SDHC demonstrate low-dose/low-LET radiation sensitization that is mediated by increased levels of O??- and H?O?. These results also support the hypothesis that mitochondrial O??- and H?O? originating from SDH are capable of playing a role in low-dose ionizing radiation-induced biological responses.  相似文献   

10.
11.
Ionizing radiation induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on apoptosis. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. We investigated the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on ionizing radiation-induced apoptosis. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 5 microM MnTMPyP for 2 h with regard to apoptotic parameters, cellular redox status, mitochondria function, and oxidative damage to cells. MnTMPyP effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP(+)+NADPH] ratio was lower in control cells compared to MnTMPyP-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of reactive oxygen species, and the reduction of ATP production were significantly higher in control cells compared to MnTMPyP-treated cells. MnTMPyP pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that MnTMPyP may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of reactive oxygen species.  相似文献   

12.
RKO36 cells exposed to either WR1065 or 10 cGy X rays show elevated SOD2 gene expression and SOD2 enzymatic activity. Cells challenged at this time with 2 Gy exhibit enhanced radiation resistance. This phenomenon has been identified as a delayed radioprotective effect or an adaptive response when induced by thiols or low-dose radiation, respectively. In this study we investigated the relative effectiveness of both WR1065 and low-dose radiation in reducing the incidence of radiation-induced micronucleus formation in binucleated RKO36 human colon carcinoma cells. The role of SOD2 in this process was assessed by measuring changes in enzymatic activity as a function of the inducing agent used, the level of protection afforded, and the inhibitory effects of short interfering RNA (SOD2 siRNA). Both WR1065 and 10 cGy X rays effectively induced a greater than threefold elevation in SOD2 activity 24 h after exposure. Cells irradiated at this time with 2 Gy exhibited a significant resistance to micronucleus formation (P < 0.05; Student's two-tailed t test). This protective effect was significantly inhibited in cells transfected with SOD2 siRNA. SOD2 played an important role in the adaptive/delayed radioprotective response by inhibiting the initiation of a superoxide anion-induced ROS cascade leading to enhanced mitochondrial and nuclear damages.  相似文献   

13.
14.
15.
Vascular Endothelial Growth Factor (VEGF)/Vascular Permeability Factor plays an important role in angiogenesis and cell proliferation of cancer cells. Glioblastoma cells are most malignant and show resistance to radiation therapy inducing VEGF to cause angiogenesis and brain edema. In the present study, the regulatory mechanism of the expression of VEGF by ionizing radiation was studied in three human glioblastoma cells. Induction of VEGF mRNA by ionizing radiation was dependent on dose and incubation time. Activator protein-1 (AP-1) was activated by 10 Gy of ionizing radiation in 1 h in T98G glioblastoma cells on an electrophoretic mobility shift assay. We constructed chimeric genes containing various regions of the VEGF promoter gene and the coding region for chloramphenicol acetyltransferase (CAT) and transiently transfected them to T98G cells. CAT assay with the VEGF promoter gene containing an AP-1 site demonstrated that the promoter activity of the VEGF gene was enhanced by ionizing radiation. Immunological analysis of the activity of mitogen-activated protein kinase, ERK1/2, showed that this activity is up-regulated by ionizing radiation.

These results suggest that ERK1/2 pathway is involved in the up-regulation of VEGF expression ionizing radiation mediated by AP-1, which may lead to further neovascularization and proliferation of glioblastoma cells resistant to radiation therapy.  相似文献   

16.
Ionizing irradiation significantly affects hippocampal neurogenesis and is associated with cognitive impairments; these effects may be influenced by an altered microenvironment. Oxidative stress is a factor that has been shown to affect neurogenesis, and one of the protective pathways that deal with such stress involves the antioxidant enzyme superoxide dismutase (SOD). This study addressed what impact a deficiency in cytoplasmic (SOD1) or mitochondrial (SOD2) SOD has on radiation effects on hippocampal neurogenesis. Wild-type (WT) and SOD1 and SOD2 knockout (KO) mice received a single X-ray dose of 5 Gy, and quantification of the survival and phenotypic fate of newly generated cells in the dentate subgranular zone was performed 2 months later. Radiation exposure reduced neurogenesis in WT mice but had no apparent effect in KO mice, although baseline levels of neurogenesis were reduced in both SOD KO strains before irradiation. Additionally, there were marked and significant differences between WT and both KO strains in how irradiation affected newly generated astrocytes and activated microglia. The mechanism(s) responsible for these effects is not yet known, but a pilot in vitro study suggests a “protective” effect of elevated levels of superoxide. Overall, these data suggest that under conditions of SOD deficiency, there is a common pathway dictating how neurogenesis is affected by ionizing irradiation.  相似文献   

17.
Friend erythroleukemia cells require high doses (15 Gy) of ionizing radiation to display a reduced rate of proliferation and an increased number of dead cells. Since ionizing radiation can activate several signaling pathways at the plasma membrane which can lead to the nuclear translocation of a number of proteins, we looked at the intranuclear signaling system activated by Protein Kinases C, being this family of enzymes involved in the regulation of cell growth and death. Our results show an early and dose-dependent increased activity of zeta and epsilon isoforms, although PKC zeta is the only isoform significantly active and translocated into the nuclear compartment upon low (1.5 Gy) and high (15 Gy) radiation doses. These observations are concomitant and consistent with an increase in the anti-apoptotic protein Bcl-2 level upon both radiation doses. Our results point at the involvement of the PKC pathway in the survival response to ionizing radiation of this peculiar cell line, offering PKC zeta for consideration as a possible target of pharmacological treatments aimed at amplifying the effect of such a genotoxic agent.  相似文献   

18.
Resident proteins that reside on the plasma membrane are continually exfoliated from the cell surface. Exfoliation is a selective, energy-dependent process that mediates intercellular communication. Ionizing radiation modulates the expression of many plasma membrane-bound growth regulators, including the "death" ligand, TNFSF6 (formerly known as FasL, CD95L). Here we report that ionizing radiation induces dose-dependent up-regulation of TNFSF6 on plasma membranes purified from SW620 cells, a TNFSF6-expressing colon cancer cell line. Serum-free medium conditioned by exposed and control cells was collected and exfoliated vesicles were obtained by ultracentrifugation. Western blot analysis of vesicles from unexposed cells and from cells treated with 10 Gy showed increased amounts of TNFSF6 compared to that on vesicles from unexposed cells. Cells treated with 4 Gy released vesicles having a low level of TNFSF6 on their surface relative to that on vesicles exfoliated from unexposed cells. When assayed for bioactivity, vesicles from unexposed cells induced the greatest level of apoptosis in TNFRSF6 (formerly known as FAS) receptor-bearing Jurkat cells (cell surviving fraction of 43.7 +/- 6.1; P < 0.05), followed by vesicles collected from cells treated with 4 Gy (79.6 +/- 2.6%; P < 0.05). Despite having a high level of TNFSF6 by Western analysis, vesicles collected from cells exposed to 10 Gy display minimal biological activity (77.9 +/- 3.2%; P < 0.05), suggesting that modification of the vesicle-associated ligand has occurred. Our results indicate that ionizing radiation increases the level of TNFSF6 exfoliated on extracellular vesicles. The data may provide a mechanism for abscopal and bystander effects after irradiation.  相似文献   

19.
In 32D cl 3 hematopoietic progenitor cells, the overexpression of manganese superoxide dismutase (MnSOD, SOD2), the enzyme normally found in mitochondria, protects against the damaging effects of ionizing radiation. In the presence of a nitric oxide donor, which exacerbates the damage, inhibition of mitochondrial function can be demonstrated to be associated with respiratory complexes I (NADH dehydrogenase) and III (cytochrome c reductase), but not II (succinate dehydrogenase), IV (cytochrome c oxidase), or V (ATP synthase). The same pattern of inhibition is observed in the case of isolated bovine heart mitochondria exposed to ionizing radiation and the nitric oxide donor. The addition of authentic peroxynitrite (ONO2(-)) to isolated mitochondria also results in damage to complexes I and III (but not II, IV, and V), as shown by assays of electron-transfer activities and electron paramagnetic resonance (EPR) spectroscopic measurements, suggesting ONO2(-) to be responsible for most of the observed radiation damage in both the cultured cell lines and isolated mitochondria. It is argued that, in general, production of ONO2(-) is an important contributor to radiation damage in biological systems and the implications of these findings in relation to possible mechanisms of oxidant-linked apoptosis are briefly considered.  相似文献   

20.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号