首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of adrenal chromaffin cells with forskolin (0.1-10 microM) stimulated cyclic AMP levels, reduced the maximal stimulation of release of noradrenaline by nicotine, and increased release in response to elevated external potassium and the calcium ionophore A23187. The presence of the phosphodiesterase inhibitor Ro 20-17-24 with forskolin potentiated both the stimulation of cyclic AMP and the inhibition of nicotine-induced noradrenaline release. Dibutyryl cyclic AMP, and the elevation of cyclic AMP with prostaglandin E1, also attenuated nicotine-stimulated release. However, when the stimulation of intracellular cyclic AMP production by prostaglandin E1 was potentiated by low levels of forskolin, there was not a concomitant potentiation of effect on noradrenaline release. Dideoxyforskolin, an analogue of forskolin which does not stimulate adenylate cyclase, inhibited both potassium- and nicotine-stimulated release, probably by a mechanism unrelated to the action of forskolin in these experiments. Using Fura-2 to estimate free intracellular calcium levels, both forskolin and dideoxyforskolin (at 10 microM) reduced the calcium transient in response to nicotine. These results support a model in which elevation of cyclic AMP inhibits the activation of nicotinic receptors, but augments stimulus secretion coupling downstream of calcium entry. The data, however, do not indicate a simple relationship between total intracellular cyclic AMP levels and the attenuation of nicotinic stimulation of release.  相似文献   

2.
Noradrenaline (norepinephrine) was shown to be a potent inhibitor of glucose-induced insulin release from rat pancreatic islets, with half-maximal inhibition of the secretory response to 20 mM-glucose occurring at approx. 0.3 microM, and complete suppression of the response occurring at 4 microM-noradrenaline. Inhibition of insulin secretion by noradrenaline was antagonized by the alpha 2-adrenergic antagonist yohimbine (half maximally effective dose approximately 1 microM), but was largely unaffected by the alpha 1-adrenergic antagonist prazosin at concentrations up to 50 microM, suggesting that the response was mediated by alpha 2-adrenergic receptors. Noradrenaline significantly reduced the extent of 45Ca2+ accumulation in glucose-stimulated islets, although as much as 5 microM-noradrenaline was required for 50% inhibition of this response. The ability of noradrenaline to inhibit islet-cell 45Ca2+ uptake was totally abolished in media containing 1 mM-dibutyryl cyclic AMP, suggesting that the response may have been secondary to lowering of islet cyclic AMP. Under these conditions, however, noradrenaline was still able to inhibit insulin secretion maximally. The data suggest that the site(s) at which noradrenaline acts to mediate inhibition of insulin secretion in rat islets lies distal to both islet-cell cyclic AMP accumulation and Ca2+ uptake.  相似文献   

3.
A pharmacological study was undertaken to determine whether the noradrenaline-stimulated breakdown of inositol phospholipids and the potentiation of isoprenaline-stimulated cyclic AMP by noradrenaline in rat cerebral cortex slices are mediated by the same alpha-receptor subtype. The rank order of potency of a range of alpha 1 and alpha 2 antagonists suggests that both responses may involve an alpha 1 receptor, but there were several differences between the pharmacological profiles for the two systems. Although in both cases, all selective alpha 1 antagonists were more potent than alpha 2 antagonists, the rank orders and the absolute potencies differed for the two responses. The inhibition of the inositol phosphate response was characterised by a high alpha 1/alpha 2 antagonist ratio, and in most cases, Hill slopes of inhibition were consistent with the involvement of a single receptor site. Inhibition of the cyclic AMP response had a much lower alpha 1/alpha 2 antagonist ratio and generally exhibited Hill slopes less than one. Evidence has been provided suggesting that adenosine is involved in the potentiation of cyclic AMP and that other, as yet unidentified, factors may also be involved. Even in the absence of an adenosine component, the results presented support the suggestion that the potentiation due to noradrenaline is mediated by a receptor whose identity does not easily fit with the currently accepted classification of alpha adrenoceptors.  相似文献   

4.
Cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) accumulates in guinea pig cerebral cortical slices during incubation with histamine, histamine + noradrenaline and adenosine. Noradrenaline does not enhance cyclic AMP formation. In the absence of Ca2+ ions and presence of 1 mM-EGTA in the Krebs-Ringer bicarbonate medium the effects of histamine, histamine + noradrenaline and adenosine are significantly enhanced and noradrenaline elicits an increase in cyclic AMP over control levels. When histamine is used as stimulant, cyclic AMP levels start to decline after only 5 min. However, in the absence of calcium and in the presence of EGTA in the medium this decline is not observed and cyclic AMP levels continue to rise for a considerable period of time. In normal medium, responses to restimulation by histamine or histamine + noradrenaline are greatly reduced in magnitude after a prior stimulation by these putative neurotransmitters. In contrast, when calcium is omitted from the incubation medium and 1 mM-EGTA is included, cyclic AMP levels increase to normal values at a second stimulation with histamine or histamine + noradrenaline. When slices are preincubated for various periods of time with histamine before addition of noradrenaline, the accumulation of cyclic AMP is significantly reduced as compared to levels obtained when histamine + noradrenaline were added simultanously. This decline in the overall response to histamine + noradrenaline is not observed when preincubation with histamine and subsequent incubations with histamine + noradrenaline are performed in Ca2+-free, 1 mM-EGTA containing buffer. Also preincubation with noradrenaline in normal, calcium-containing medium does not affect the total amount of cyclic AMP accumulating in the brain slices. The results are discussed in terms of an activation of phosphodiesterase within the cerebral cortical slices by increased levels of intracellular, freely available calcium which is mediated by the elevation of cyclic AMP concentration following hormonal stimulation.  相似文献   

5.
The effects of forskolin (1 microM) and EGTA (5 mM) on indirect cyclic AMP responses in slices of guinea-pig cerebral cortex were examined. Forskolin had little effect on the direct 2-chloroadenosine-stimulated cyclic AMP response. However, it completely abolished the glutamate-induced augmentation of this response. In contrast, forskolin had very little effect on the indirect cyclic AMP responses to noradrenaline, 5-hydroxytryptamine, and histamine. Conversely, rapid removal of extracellular calcium with EGTA 2 min before addition of the indirectly acting agent markedly reduced the augmentation responses produced by these latter agonists, but had little effect on the glutamate augmentation. When EGTA was added once a steady level of cyclic AMP had been achieved with the indirect agents, it was without effect on any of the responses. Thus, calcium appears to have a role in the early, but not the later, stages of the noradrenaline, 5-hydroxytryptamine, and histamine responses. A role for protein kinase C in the glutamate augmentation response was suggested, because forskolin inhibited the augmentation of the 2-chloroadenosine response produced by phorbol esters (which mimic the actions of diacylglycerol in activating protein kinase C). We conclude that there is more than one mechanism by which the augmentation of cyclic AMP responses can occur.  相似文献   

6.
In order to elucidate the mechanism of denervation supersensitivity, the effects of 6-hydroxydopamine lesion, placed in the substantia nigra, were examined on rat brain caudate adenylate cyclase and 3H-haloperidol binding to membrane dopamine receptors. In addition, the effects of chronic administration of L-DOPA, bromocriptine and piribedil were also investigated on 3H-haloperidol binding and dopamine, K+ isoproterenol (IPNE) and 2-Cl-adenosine stimulated formation of cyclic AMP in caudate slices. 6-Hydroxydopamine lesions resulted in significantly greater stimulation of adenylate cyclase by dopamine at various concentrations tested. The haloperidol binding sites were increased by 28% on lesioned side caudate without changes in dissociation constants (KD). Three weeks after treatment with L-DOPA, bromocriptine or piribedil, the 3H-haloperidol binding sites were decreased by 40% with no change in KD. The stimulatory effect of dopamine on cyclic AMP formation was also abolished, although there was no change in IPNE, K+, or 2-Cl-adenosine stimulated cyclic AMP formation in caudate slices, suggesting a specific effect of dopamine agonists on dopamine receptors. The results of these studies suggest a close relationship between at least some populations of dopamine receptors and adenylate cyclase in the caudate nucleus.  相似文献   

7.
This study was undertaken to examine the role of phospholipase A2 and protein kinase C in the potentiation of beta-adrenoceptor-mediated cyclic AMP formation by alpha-adrenoceptors in rat cerebral cortical slices. Inhibition of arachidonic acid metabolism by a range of cyclooxygenase and lipoxygenase inhibitors had no effect on the potentiation of isoprenaline-stimulated cyclic AMP. Conversely, stimulation of leukotriene formation had no effect on the response to isoprenaline. The phospholipase A2 activator, melittin, stimulated cyclic AMP and potentiated the effect of isoprenaline, but these responses were not influenced by cyclooxygenase or lipoxygenase inhibitors. Indomethacin was also ineffective against the potentiation of vasoactive intestinal peptide-stimulated cyclic AMP by noradrenaline. Phorbol ester potentiated the cyclic AMP response to isoprenaline, and this potentiation was antagonized by three different putative protein kinase C inhibitors. However, the same inhibitors did not affect the alpha-adrenoceptor-stimulated enhancement of the response to isoprenaline. We have found no evidence, therefore, to support the suggestion that arachidonic acid and its metabolites and/or protein kinase C mediate the alpha-adrenoceptor modulation of beta-adrenoceptor function.  相似文献   

8.
Prostaglandin H2 (PGH2) inhibited noradrenaline induced cyclic AMP accumulation in isolated rat fat cells in a dose-dependent manner. IC50 was 10-25 ng/ml both in the absence and in the presence of theophylline. The degree of inhibition produced by PGH2 increased with time of incubation. A stable PGH2 analog did not inhibit cyclic AMP accumulation. PGH2 was rapidly converted by isolated fat cells to PGD2, PGE2 and PGF2alpha' but no formation of thromboxane B2 was found either in vitro or in vivo. PGE2 was a more potent inhibitor than PGH2 of noradrenaline induced cyclic AMP accumulation. PGD2 enhanced cyclic AMP accumulation in a limited concentration interval, while PGF2alpha was essentially uneffective. Our results suggest that PGH2 is an inhibitor of cyclic AMP formation in isolated rat fat cells only after conversion to PGE2. A physiological role for PGH2 as a modulator of lipolysis is considered unlikely.  相似文献   

9.
Abstract— In guinea-pig cerebral cortical slices levels of cyclic AMP increase in response to adenosine to about 200pmol/mg protein within 10 min and stay at that level up to 30 min. In the absence of calcium ions and the presence of 1mm -EGTA in the Krebs-Ringer-bicarbonate medium the effect of adenosine is enhanced, cyclic AMP levels rise to about 600 pmol/mg protein within 30 min. In normal and calcium deficient media restimulation of cyclic AMP formation with adenosine is possible after a prior stimulation with adenosine. When slices are preincubated for various periods of time with histamine or adenosine before addition of the complementary agent i.e. adenosine or histamine cyclic AMP levels obtained are unaltered compared to levels seen when adenosine and histamine are added together. Slices which are rendered unresponsive to stimulation with histamine + noradrenaline by a prior incubation with these agents do not regain any response during a 100 min period of incubation in medium. The PDE inhibitors diazepam, SQ 66007 and isobutylmethylxanthine are capable of restoring the sensitivity of the slices to histamine + noradrenaline. This suggests an involvement of PDE in the unresponsive phase of the slices. Addition of adenosine to slices not affected by histamine + noradrenaline does reestablish the response of these slices to the neurohormones. A dose-response curve of adenosine for the interaction with histamine + noradrenaline yields an ED50 of 16 μM using sensitive or desensitized slices. An adenosine concentration of only 7 μM is necessary to restore the original increase of cyclic AMP in response to histamine + noradrenaline to slices insensitive to the biogenic amines. The data are discussed in terms of a possible activation of PDE within cerebral cortical slices from guinea-pig. Adenosine may reverse this activation. The possibility of inactivation of adenylate cyclase during stimulation of cyclic AMP formation and the role of adenosine and PDE inhibitors in this process is being considered.  相似文献   

10.
In human cerebral cortex slices noradrenaline, isoproterenol (a beta-adrenergic agonist), dopamine, apomorphine (a dopaminergic agonist), and serotonin stimulated cyclic AMP formation: noradrenaline greater than or equal to isoproterenol greater than dopamine = apomorphine = serotonin. Clonidine (and alpha-adrenergic agonist) was ineffective in stimulating cyclic AMP formation in temporal cortex slices. The stimulatory effect of noradrenaline and isoproterenol was blocked by propranolol (a beta-adrenergic blocker) but not by phentolamine (an alpha-adrenergic blocker). Pimozide (a selective dopaminergic antagonist) inhibited the increase of cyclic AMP formation induced by dopamine or apomorphine but not that induced by noradrenaline, isoproterenol, or serotonin. Neither propranolol or phentolamine had any effect on dopamine- or serotonin-stimulated cyclic AMP formation. Chlorpromazine blocked the increase of cyclic AMP formation induced by noradrenaline, dopamine or serotonin, while cyproheptadine, a putative central serotonergic antagonist, was ineffective. These observations suggest that there may be at least two monoamine-sensitive adenylate cyclases in human cerebral cortex which have the characteristics of a beta-adrenergic and a dopaminergic receptor, respectively, and also possibly a serotonergic receptor.  相似文献   

11.
The effect of galanin on noradrenaline (NA)-induced accumulation of cyclic AMP was investigated in slices of rat cerebral cortex. NA (10(-4)M) increased cyclic AMP levels during a 20-min observation period. Galanin (3 X 10(-7)M) significantly inhibited this response at all time points examined, although it did not change the basal levels of cyclic AMP. Galanin (10(-8)-3 X 10(-6)M) inhibited the cyclic AMP response to NA (10(-4)M) in a dose-dependent manner, with an IC50 of approximately 5.6 X 10(-8)M and a maximum inhibition of 59%. These results suggest that galanin, devoid of any detectable effects by itself, modulates the cyclic AMP response to NA in the rat cerebral cortex.  相似文献   

12.
Several benzodiazepines, diazepam, chlordiazepoxide, desmethyldiazepam, methyloxazepam and oxazepam, potentiate the accumulation of cyclic AMP elicited by histamine and histamine: noradrenaline in cerebral cortical slices of guinea pig. In addition, these drugs increase basal levels of cyclic AMP by about 100 per cent. When adenosine is used to stimulate cyclic AMP formation only diazepam, desmethyldiazepam and methyloxazepam are increasing cyclic AMP levels significantly over respective controls. The order of potency is: diazepam > desmethyldiazepam > methyloxazepam > oxazepam > chlordiazepoxide. Diazepam decreases the rate of degradation of cyclic AMP after removal of the stimulatory agents (histamine : noradrenaline). Dose response curves for diazepam under two stimulatory conditions are shown. A significant effect is obtained at 50 μm -diazepam and an ED50 of 40 μm is calculated with histamine as the stimulatory agent. When cyclic AMP formation is elicited by histamine : noradrenaline a significant effect of diazepam is seen at 10 μm and an ED50 of 16 μm is obtained. These results lend support to the hypothesis that the psychotropic action of the benzodiazepines may, at least in part, involve the cyclic AMP generating systems of the central nervous system.  相似文献   

13.
Responsiveness to catecholamines was studied in two different strains of rat glioma C6 cells. The C6 cells of low passage possessed a high capacity to accumulate cyclic AMP in response to (-)-isoproterenol. Cholera toxin was also able to stimulate cyclic AMP accumulation in these cells. High passage C6 cells were unresponsive to (-)-isoproterenol or to cholera toxin except in the presence of a high concentration of phosphodiesterase inhibitor. The affinity of beta-adrenergic receptors on both strains for (-) [3H] dihydroalprenolol was similar; however, C6 low passage possessed several times the number of beta-adrenergic receptors found in C6 high passage. This difference correlated with the difference found in (-)-isoproterenol-stimulated adenylate cyclase between C6 low passage and high passage. The sodium fluoride-stimulated adenylate cyclase was similar in both strains. Cyclic AMP phosphodiesterase activity was 2-3 times higher in homogenates of C6 high passage than in low passage. In intact cells, the rate of breakdown of cyclic AMP was 5-times faster in C6 high passage than in low passage. Thus, differences in beta-adrenergic receptor number and phosphodiesterase activity explain in part the lack of responsiveness of C6 high passage. Our studies indicate that continuous subculturing of rat glioma C6 cells led to complex alterations in the beta-adrenergic receptor-adenylate cyclase system.  相似文献   

14.
The subcutaneous injection of isoprenaline, salbutamol, histamine, and adrenaline to rats, which were subsequently killed by microwave irradiation, resulted in a rapid increase in the cyclic AMP content of the carotid body. On the other hand, noradrenaline, dopamine, adenosine, and 5-hydroxytryptamine, at doses at least 100 times greater than that of isoprenaline, did not significantly alter the cyclic nucleotide content in vivo. The response to isoprenaline was dose related, with an ED50 of 15 micrograms X kg-1, and reached a peak level 1-1.5 min after injection. Incubation of intact carotid bodies with isoprenaline (10(-5) M) in vitro also resulted in a 10-fold increase in cyclic AMP content. The in vivo response to isoprenaline could be blocked stereo-selectively by propranolol, and ICI 118.551, a beta 2-selective antagonist, blocks the isoprenaline-elicited increase in cyclic AMP completely at a dose of 30 micrograms X kg-1; whereas betaxolol, a beta 1-selective antagonist, was ineffective, even at a dose of 300 micrograms X kg-1. Hypoxia (5% oxygen in 95% N2) did not result in a significant increase in the cyclic AMP content, nor did it significantly alter the isoprenaline-stimulated increase in the cyclic AMP content of the rat carotid body. These results suggest that some catecholamines may stimulate cyclic AMP formation by interacting with a beta 2-adrenoceptor in the rat carotid body.  相似文献   

15.
Barbital-sedated, cold-acclimated (CA) or warm-acclimated (WA) rats were given different doses and combinations of noradrenaline, theophylline, and the adrenergic-blocking agents propranolol and phentolamine, to stimulate or inhibit calorigenesis in various ways. To see whether the effects of these drugs on calorigenesis could be ascribed to effects on the adenylate cyclase (EC 4.6.1.1) - cyclic AMP system, and to try to assess thereby the significance of this system in the regulation of nonshivering thermogenesis (NST), changes in the concentration of plasma cyclic AMP were measured as an index (Broadus, A.E., Hardman, J.G., Kaminsky, N. I., Ball, J. H., Sutherland, E.W., and Liddle, G. W.: 1971. Ann. N.Y. Acad. Sci. 185, 50-60) of changes in tissue levels of cyclic AMP. In CA rats, which have a severalfold greater capacity for NST than WA rats, calorigenic responses to noradrenaline, theophylline, noradrenaline plus theophylline, or phentolamine plus theophylline were as much as four times larger than in WA rats, However, the changes in level of plasma cyclic AMP produced by each of these and other treatments were virtually the same for both groups. It would appear, therefore, that the difference between WA and CA rats in ability to produce heat by NST is not a function of the amplitude of changes in tissue levels of cyclic AMP. Nevertheless, it was also observed, and was particularly striking in CA rats, that when a drug or combination of drugs had a stimulatory, inhibitory, or synergistic effect on calorigenesis, it had a similar effect with respect to elevation of plasma cyclic AMP. Altogether, the results indicate that adenylate cyclase and cyclic AMP are likely to be participants in the regulation of NST in the rat, but that they would be subservient in this regard to whatever factors are responsible for acclimation-related differences in capacity for NST.  相似文献   

16.
Activation of lipolysis by cyclic AMP in conditions with accelerated lipid mobilization was examined in subcutaneous adipose tissue incubated in vitro. In (a) 16 obese patients before and during therapeutic starvation, (b) 18 diabetics before and after antidiabetic treatment and (c) 11 hyperthyroid patients before and after anti-thyroid treatment, a positive correlation was found between stimulation of basal cyclic AMP accumulation and stimulation of basal glycerol release using either isopropyl noradrenaline or noradrenaline (r = 0.6-0.9). During antidiabetic treatment stimulation of lipolysis increased in relation to that of cyclic AMP accumulation (F = 10.1, p less than 0.01), whereas during antithyroid therapy there was a decrease (F = 95.2, p less than 0.01). Starvation did not alter the relationship between lipolysis and cyclic AMP in hypogastric adipose tissue whereas in femoral tissue stimulation of lipolysis decreased in relation to that of cyclic AMP accumulation (F = 9.6, p less than 0.01). It is concluded that the amount of cyclic AMP needed to promote lipolysis is increased during starvation and in diabetes mellitus but is decreased in hyperthyroidism. From the studies during starvation it appears that regional differences in the post-receptor activation of lipolysis exist in human adipose tissue.  相似文献   

17.
1. The cyclic AMP phosphodiesterase in homogenates of the submaxillary gland and pancreas was found to be associated mainly with the 300,000 times g supernatant fraction. A Lineweaver-Burk plot showed a high-affinity (Km app. = 1.6 muM) and a low-affinity (Km app. greater than 100muM) component for the cyclic AMP substrate. The enzyme was magnesium dependent, and strongly inhibited by papaverine, theophylline and caffeine. Cyclic GMP inhibited cyclic AMP phosphodiesterase, but only in concentrations greatly exceeding that of the cyclic AMP. Calcium did not alter the activity of the enzyme. The activity of the submaxillary cyclic AMP phosphodiesterase was not influenced by noradrenaline, dopamine, histamine, 5-hydroxytryptamine or gamma-amino butyric acid, and that of the pancreatic enzyme by acetylcholine, pancreozymin or secretin. 2. Adenylate cyclases from guinea-pig submaxillary gland and cat pancreas are particulate enzymes. The highest specific activity was recovered from the 1500 times g pellet. Guineo-pig submaxillary adenylate cyclase was activated by fluoride, noradrenaline, isoprenaline and adrenaline. The noradrenaline activation was blocked by the beta-adrenoceptor blocker, propranolol, but not by the alphs-adrenoceptor blocker, phentolamine. Neither acetylcholine nor carbachol had any effect on the adenylate cyclase activity. The apparent Km value for the 10- minus 4 M noradrenaline activated adenylate cyclase activity was completely aboliched by 5 mM calcium. Cat pancreatic adenylate cyclase was clearly and consistently activated by secretin, but not by pancreozymin or carbachol.  相似文献   

18.
Manipulation of the hypothalamic-pituitary-adrenal axis selectively alters alpha-adrenergic potentiation of the cyclic AMP response to beta-adrenergic receptor stimulation in rat cerebral cortex. Calcium has been implicated in this alpha-receptor-mediated response, which may involve activation of phospholipases A2 and C and/or calmodulin-dependent adenylate cyclase. We therefore investigated the effects of stress and corticosterone (CORT) on membrane calmodulin-dependent adenylate cyclase and noradrenaline-stimulated cyclic AMP accumulation in brain slices. Repeated stress for 21 days selectively attenuated the adenylate cyclase response to calcium/calmodulin in cerebral cortex membranes, without affecting basal or forskolin-stimulated enzyme activity. There was no such effect in hippocampal membranes. The same pattern of response was elicited by daily CORT injection (50 mg/kg s.c.) for 21 days, while vehicle injection had no effect. CORT in the drinking water (400 micrograms/ml) elicited the same reduction of body weight as CORT injections, but had no effect on calmodulin adenylate cyclase. In parallel with calmodulin adenylate cyclase, cyclic AMP accumulation elicited by noradrenaline in slices of cerebral cortex was suppressed by both stress and daily CORT injections, with smaller effects observed with CORT in the drinking water. Unlike calmodulin adenylate cyclase, noradrenaline-stimulated cyclic AMP accumulation in hippocampus showed the same suppression as that in cerebral cortex. These results are discussed in relation to the differential mode of coupling of alpha-adrenergic receptors to cyclic AMP-generating systems between brain regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The relationship between mean fat cell size, maximal tissue cyclic AMP concentration, and glycerol release was investigated in human subcutaneous adipose tissue incubated in vitro with or without isoprenaline or noradrenaline added at maximal effective concentrations. Basal and stimulated glycerol release and cyclic AMP concentration were each related to the fat cell size. Whether or not the phosphodiesterase inhibitor theophylline was present in the incubation system, basal and noradrenaline-induced cyclic AMP levels were significantly correlated with the fat cell size. The noradrenaline-induced cyclic AMP levels resulted in twice as rapid glycerol release as could be expected from the basal ratio between glycerol release and cyclic AMP. Furthermore, both basal and noradrenaline-induced glycerol release in relation to the cyclic AMP levels were more rapid in enlarge fat cells. It is concluded that basal and catecholamine-induced production of cyclic AMP is related to the fat cell size and that a quantitative relationship exists between rate of lipolysis and maximal tissue levels of cyclic AMP in human adipose tissue. Basal and noradrenaline-induced lipolysis are probably regulated by different mechanisms and the lipolytic sensitivity to cyclic AMP seems increased in large fat cells.  相似文献   

20.
The equilibrium binding of cyclic AMP to a 150-fold purified preparation of protein kinase, when expressed as the reciprocal of bound against the reciprocal of free cyclic AMP, gave a plot consisting of two straight lines. The values of apparent Kb given by these lines were lowered by preincubating the intact tissue with noradrenaline or incubating the enzyme preparation with Mg2+ plus ATP. This effect was reversed by incubating the preparation (which contained some phosphatase impurities) with Mg2+ alone. None of these procedures affected the maximal binding of cyclic AMP. During incubation of the enzyme with Mg2+ plus ATP, the terminal phosphoryl group was incorporated into protein, over 40% being present in the kinase itself. This phosphate was removed during incubation of the preparation with Mg2+ alone. The validity of expressing cyclic AMP binding as a double-reciprocal plot is discussed, and the experimental plots are compared with those derived theoretically. The results suggest that protein kinase in brown fat is present in two forms, one with an apparent Kb for cyclic AMP or approx. 250 nM (dephosphorylation) and one with an apparent Kb of approx. 14 nM (phosphorylated). Preincubation of the tissue with noradrenaline results in phosphorylation of the kinase and an increase from 15 to 45% in the proportion of the higher-affinity form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号