首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. METHODS: Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. KEY RESULTS: Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. CONCLUSIONS: The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.  相似文献   

2.

Key message

We observed the formation of latewood tracheids with narrow diameters and thick walls and the disappearance of stored starch around the cambium on the locally heated region of stems in evergreen conifer Chamaecyparis pisifera during winter cambial dormancy.

Abstract

Wood formation is controlled by cambial cell division, which determines the quantity and quality of wood. We investigated the factors that control cambial activity and the formation of new tracheids in locally heated stems of the evergreen conifer Chamaecyparis pisifera. Electric heating tape was wrapped around one side of the stem, at breast height, of two trees in 2013 and two in 2014. Pairs of stems were locally heated in winter, and small blocks were collected from heated and non-heated regions of stems. Cambial activity and levels of stored starch around the cambium were investigated by microscopy. Cambial reactivation and xylem differentiation occurred earlier in heated than in non-heated regions. New cell plates were formed after 14–18 days of heating. After a few layers of tracheids with large diameters and thin walls had formed, cell division and cell enlargement during differentiation were inhibited. Tracheids with narrow diameters and thick walls, defining those as latewood, were formed near the cambium, and finally, four to six layers of tracheids were induced. After cambial reactivation, amounts of stored starch started to decrease and starch disappeared completely from phloem and xylem cells that were located near the cambium during the differentiation of heated regions. Our results suggest that an increase in temperature induces the conversion of stored starch to soluble sugars for continuous cambial cell division and earlywood formation. By contrast, a shortage of stored starch might be responsible for inhibition of cambial activity and induction of the formation of latewood tracheids.
  相似文献   

3.
Oribe Y  Funada R  Shibagaki M  Kubo T 《Planta》2001,212(5-6):684-691
A study was made of cambial activity, the localization of storage starch around the cambium, and the localization and occurrence of microtubules in cambial cells from dormancy to reactivation in locally heated (22–26 °C) stems of the evergreen conifer Abies sachalinensis. Heating induced localized reactivation of the cambium in the heated portions of the stem. Erect ray cambial cells resumed cell division 1 d prior to the reactivation of fusiform cambial cells and procumbent ray cambial cells. The re-initiation of the division of fusiform cambial cells occurred first on the phloem side. During the heat treatment, the amount of storage starch decreased in procumbent ray cambial cells and in the phloem parenchyma adjacent to the cambium but increased in fusiform cambial cells. Preprophase bands of microtubules, spindle microtubules and phragmoplast microtubules were observed both in erect ray cambial cells and in procumbent ray cambial cells. By contrast, no evidence of the presence of such preprophase bands of microtubules was detected in fusiform cambial cells. The results suggest that the localized heating of stems of evergreen conifers might provide a useful experimental model system for studies of the dynamics of cambial reactivation in intact trees. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

4.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

5.
Differences in the timing of cambial reactivation and the initiation of xylem differentiation in response to the sum of daily maximum temperatures were studied in two Cryptomeria japonica trees with cambium of different ages under natural and locally heated conditions. In addition, we observed the effects of low temperature on cambial activity. The timing of cambial reactivation and of the initiation of xylem differentiation differed between 55- and 80-year-old cambium under natural conditions. In the 55-year-old cambium, cambial reactivation occurred when the cambial reactivation index (CRI), calculated on the basis of daily maximum temperatures in excess of 10°C, was 94 and 97°C in 2007 and 2008, respectively. In 80-year-old cambium, cambial reactivation occurred when the CRI, calculated on the basis of daily maximum temperatures in excess of 11°C, was 69 and 71°C in 2007 and 2008, respectively. After cambial reactivation in 2007, normal cell division was evident in the cambium even though the minimum temperature had fallen between −2 and −3°C. Under natural conditions, xylem differentiation started 38–44 days after cambial reactivation. In heated stems, the time between cambial reactivation and the initiation of xylem differentiation ranged from 14 to 16 days, a much shorter time than under natural conditions, indicating that continuous exposure to an elevated temperature had induced earlier xylem differentiation. Our observations indicate that the sensitivity to reactivation inducing stimuli of the cambium depends on both the stage of dormancy and tree age of the cambium.  相似文献   

6.
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica.Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis.Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems.Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees.  相似文献   

7.
Changes in protein synthesis in cambial region cells were monitored in 1-year-old cuttings of Scots pine ( Pinus sylvestris L.) collected in November, when the cambium was dormant, and subjected to environmental conditions that promoted or inhibited cambial growth. The proteins were labelled in vivo with L-[35S]-methionine and separated using 2-dimensional polyacrylamide gel electrophoresis. In budded cuttings cultured under environmental conditions favoring cambial reactivation, there was a reproducible quantitative change in 55 proteins (33 induced and 22 repressed), a less certain increase or decrease in 40 proteins, and no apparent change in about 150 proteins. Under the same conditions, 8 proteins were induced and 6 others were repressed in debudded cuttings treated apically with 1 mg indole-3-acetic acid (IAA) in 1 g lanolin, in which cambial reactivation occurred, compared with debudded cuttings treated with plain lanolin in which the cambium did not reactivate. Three of the proteins induced in the IAA-reated cuttings only appeared after cambial cell division and derivative differentiation actually began, and the same proteins were found in budded cuttings after their cambium had become reactivated. In contrast, protein expression in cuttings exposed to environmental conditions that prevented cambial reactivation was similar at the beginning and end of the experimental period. These results indicate that the cambium was in the quiescence stage of dormancy at the start of the experiment, that quiescent cambial region cells can synthesize proteins as soon as exposed to environmental conditions favoring reactivation, and that only 3 of the approximately 250 proteins detected were specifically involved in cambial growth  相似文献   

8.
Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature.  相似文献   

9.
The cambium dynamics and wood formation of Oriental beech (Fagus orientalis Lipsky) was investigated during the 2008 growing season in the Nowshahr Hyrcanian forest, Iran (36°N, 51°E). Three study sites were selected along an altitudinal gradient (650, 1,100 and 1,600 m a.s.l.), and cambial activity rates of cell formation and cell maturation were studied on micro-cores collected in intervals of 10–20 days. The cambium reactivation of the low-altitude (L) and mid-altitude (M) trees occurred contemporaneously in late March, and also the consecutive phases of cell differentiation took place almost at the same time; however, the entry into cambial dormancy varied considerably from late August to mid-November. Due to lower temperature, the upper-altitude (U) trees showed a 10-day delay in their cambium reactivation, an earlier entry into cambium dormancy (mid-September) and a slower growth rate resulting in narrower tree rings. Despite these differences, the daily increment rates of the trees at all sites reached maximum values coincidently in the early June. Since the photoperiod is the only common external factor among different sites, it is concluded that the timing of the highest growth rate is controlled by the photoperiod.  相似文献   

10.
Methods of sampling and sections preparaction were the same as reported previously. Except that sampling was made at monthly intervals between May 20 and July 30, then at 7–14 day-intervals between July 30 and October 14, and then at monthly intervals between October 14 and March 25 in the next year. The stored starch in various tissues was stained with PAS reaction. During active period of cambium in Broussonetia papyrifera after July 30, the cell layers of immature xylem and phloem decreased progressively, and the formation of mature xylem and phloem increased rapidly. The formation of late wood started early in August, formation of xylem ceased after September 5, followed by ceasation of phloem formation about 1.5 months later. Increasing and decreasing of stored starch were closely related to the periodicity of cambial activity during the year. Starch grains decreased progressively after cambial activity was resumed in early spring until they disappeared in all the stem tissues. Then, starch accumulated progressively again after cambial activity slowed down, particularly after the ceasation of xylem formation. However, after the formation of phloem had ceased, the stored starch once again disappeared progressively until the end of December, and accumulated again. Such changes might be related to the transition of cambium activity involving two periods of dormancy.  相似文献   

11.
Methods of sampling and sections preparaction were the same as reported previously. Except that sampling was made at monthly intervals between May 20 and July 30, then at 7–14 day-intervals between July 30 and October 14, and then at monthly intervals between October 14 and March 25 in the next year. The stored starch in various tissues was stained with PAS reaction. During active period of cambium in Broussonetia papyrifera after July 30, the cell layers of immature xylem and phloem decreased progressively, and the formation of mature xylem and phloem increased rapidly. The formation of late wood started early in August, formation of xylem ceased after September 5, followed by ceasation of phloem formation about 1.5 months later. Increasing and decreasing of stored starch were closely related to the periodicity of cambial activity during the year. Starch grains decreased progressively after cambial activity was resumed in early spring until they disappeared in all the stem tissues. Then, starch accumulated progressively again after cambial activity slowed down, particularly after the ceasation of xylem formation. However, after the formation of phloem had ceased, the stored starch once again disappeared progressively until the end of December, and accumulated again. Such changes might be related to the transition of cambium activity involving two periods of dormancy.  相似文献   

12.
13.
木材(次生木质部)是树木形成层细胞分化的产物,形成层的活动方式不仅影响木材的产量,而且影响木材的结构和性质.利用透射电子显微镜观察了生长在北京地区的毛白杨(Populus tomentosa Carr.)枝条形成层带细胞一个完整活动周期的超微结构变化.在木质部母细胞完全恢复活动之前,形成层纺锤状原始细胞的分裂和韧皮部细胞的分化已经开始.枝条上芽的展开和幼叶的生长可能决定了形成层带细胞的这种活动方式.透射电镜观察更清楚地揭示了树木形成层细胞在活动初期的分化特点.活动期形成层细胞中的大液泡在进入休眠期后逐渐分成许多小液泡分散在细胞质中.随着液泡融合逐渐消失的深色蛋白类物质又重新充满了大部分液泡.油滴和淀粉颗粒的年变化情况同液泡中的蛋白类物质基本相似.无论在活动期还是休眠期,形成层纺锤形细胞的质膜上都发现有许多可能与物质运输有关的小泡状内折.由核膜、内质网和高尔基体及其分泌小泡组成的细胞内膜系统,在形成层活动周期的不同阶段,其形态和分布明显不同,尤其在形成层细胞的恢复活动及其衍生木质部细胞次生壁的沉积过程中发挥着重要作用.整个活动周期中,形成层纺锤形细胞的径向壁都比弦向壁厚,处在休眠期的形成层带细胞,其径向壁与弦向壁的差别则更明显.形成层恢复活动时,径向壁上特别是与弦向壁相连的角隅处出现部分自溶现象.细胞壁特别是径向壁的变薄是形成层细胞恢复活动的重要特征.  相似文献   

14.
BACKGROUND AND AIMS The effect of heating and cooling on cambial activity and cell differentiation in part of the stem of Norway spruce (Picea abies) was investigated. METHODS: A heating experiment (23-25 degrees C) was carried out in spring, before normal reactivation of the cambium, and cooling (9-11 degrees C) at the height of cambial activity in summer. The cambium, xylem and phloem were investigated by means of light- and transmission electron microscopy and UV-microspectrophotometry in tissues sampled from living trees. KEY RESULTS: Localized heating for 10 d initiated cambial divisions on the phloem side and after 20 d also on the xylem side. In a control tree, regular cambial activity started after 30 d. In the heat-treated sample, up to 15 earlywood cells undergoing differentiation were found to be present. The response of the cambium to stem cooling was less pronounced, and no anatomical differences were detected between the control and cool-treated samples after 10 or 20 d. After 30 d, latewood started to form in the sample exposed to cooling. In addition, almost no radially expanding tracheids were observed and the cambium consisted of only five layers of cells. Low temperatures reduced cambial activity, as indicated by the decreased proportion of latewood. On the phloem side, no alterations were observed among cool-treated and non-treated samples. CONCLUSIONS: Heating and cooling can influence cambial activity and cell differentiation in Norway spruce. However, at the ultrastructural and topochemical levels, no changes were observed in the pattern of secondary cell-wall formation and lignification or in lignin structure, respectively.  相似文献   

15.
构树形成层的活动周期及其淀粉贮量的变化   总被引:7,自引:2,他引:5  
在构树(Broussonetia papyrifera (L.) Vent.)形成层活动周期中,每年7月末以后,未成熟的木质部和韧皮部逐渐减少,成熟的木质部和韧皮部急剧增多。8月初开始分化晚材。进入9月后木质部的形成逐渐停止,而一个半月以后才停止形成韧皮部。淀粉贮量的消长与形成层的活动周期有很强的相关关系。早春形成层恢复活动后,淀粉贮量逐渐减少直至消失。尔后,形成层活动减慢,特别是木质部分化停止后,淀粉又开始积累。当韧皮部分化也停止后,淀粉又消失,直至翌年1月才重新积累,这似乎与两个休眠期的转化有关  相似文献   

16.
BARNETT  J. R. 《Annals of botany》1992,70(2):169-177
Changes taking place during cambial reactivation in Aesculushippocastanum have been studied using transmission electronmicroscopy. Cytoplasmic activity in the form of vesicle productionby dictyosomes and endoplasmic reticulum, and coated vesicleformation at the plasmalemma, was observed in samples collectedin mid-Feb. The first cell divisions occurred 1 month later,in cells to the phloem side of the cambium, and were of twotypes: penclinal divisions producing new phloem precursors,and oblique anticlinal divisions in phloem mother cells formedat the end of the previous growing season producing putativecompanion cell/sieve element pairs. The fusiform initial wasidentified as the cell adjacent to the boundary-layer of parenchymacells and was the last cell to divide, 2 weeks after the firstdivisions in phloem precursors. For the next 4 weeks phloemcells only were produced The first new differentiating xylemelements were formed in the middle of Apr., following a surgein the rate of cell division by the initial aRd its derivativexylem mother cells. These were a mixture of developing fibresand vessel elements. Some of the boundary-layer cells were converteddirectly to vessel elements without any division taking place,while others were derived from daughter cells of the fusiforminitial produced following its reactivation. Aesculus hippocastanum L., cambium, dormancy, reactivation  相似文献   

17.
The dormant cambial zone consisted of 5–6 cell layers in the main stem of Pinus sylvestris L. trees that were ca. I00 years old. Time of cambial reactivation was comparable at one (bottom) and 8 (top) meters above the ground. In spring, when the cambium reactivated, the number of cambial cells slightly increased and phloem cells were formed. The production of xylem cells followed 3–4 weeks later. The formation of xylem cells decreased, whereas that of phloem cells increased between late June and early July. Cambial reaction in 1-year-old cuttings that were debudded and treated apically with IAA in lanolin was similar to that in the ca. 100-year-old main stem. However, in debudded cuttings treated with plain lanolin, the number of cells in the carnbial zone decreased during the first week of culture, and only a few phloem cells were formed. Later, the fusiform cambial cells of the cambial zone were divided transversely and lost their typical morphology. It is proposed that some factor(s) from roots may stimulate the initiation of cambial cell division, because when the cambium reactivated, the number of cambial cells slightly increased in the ca. 100-year-old main stem, but decreased in the 1-year-old cuttings.  相似文献   

18.
BARNETT  J. R. 《Annals of botany》1973,37(5):1005-1011
Examination of Pinus radiata cambium from trees growing in thecentral North Island of New Zealand has revealed that many ofthe structural changes occurring in other tree species at theonset or cessation of cambial activity are not found in thisspecies. The winter cambium bears a closer resemblance to thesummer cambium than it does to the winter cambium of any otherangiosperm or gymnosperm described in the literature. In particularthere is little change in vacuolar structure, endoplasmic reticulumform, and dictyosomal activity during the year. The only changeswhich take place involve a slight increase in vacuole volume,storage of starch in vacuoles, and a decrease in numbers ofspherosomes during the summer. These observations confirm that,while the degree of cambial activity is reduced in the winter,complete dormancy is absent.  相似文献   

19.
Aspects of the structure and ultrastructure of the fusiform cambial cells of the taproot of Aesculus hippocastanum L. (horse chestnut) are described in relation to the seasonal cycle of cambial activity and dormancy. Particular attention is directed at cell walls and the microtubule and microfilament components of the cytoskeleton, using a range of cytochemical and immunolocalization techniques at the optical and electron-microscopical levels. During the dormant phase, cambial cell walls are thick and multi-layered, the cells possess a helical array of cortical microtubules, and microfilament bundles are oriented axially. In the early stages of reactivation, vesicle-like profiles are associated with the cell walls, whereas arrangement of the cytoskeletal elements remains unchanged. In the succeeding active phase, the cell walls are thin, and cortical microtubules form a random array, although microfilament bundles maintain a near-axial orientation. The observations are discussed in relation to the seasonal cycle of wall structure and cortical microtubule rearrangement within the vascular cambium of hardwood trees. It is suggested that the cell-wall thickening at the onset of cambial dormancy, which is associated with the presence of a helical cortical microtubule array, should be considered to be secondary wall thickening, and that selective lysis of this secondary wall layer during cambial reactivation restores the thinner, primary wall found around active cambial cells.  相似文献   

20.

Background and Aims

The networks of vessel elements play a vital role in the transport of water from roots to leaves, and the continuous formation of earlywood vessels is crucial for the growth of ring-porous hardwoods. The differentiation of earlywood vessels is controlled by external and internal factors. The present study was designed to identify the limiting factors in the induction of cambial reactivation and the differentiation of earlywood vessels, using localized heating and disbudding of dormant stems of seedlings of a deciduous ring-porous hardwood, Quercus serrata.

Methods

Localized heating was achieved by wrapping an electric heating ribbon around stems. Disbudding involved removal of all buds. Three treatments were initiated on 1 February 2012, namely heating, disbudding and a combination of heating and disbudding, with untreated dormant stems as controls. Cambial reactivation and differentiation of vessel elements were monitored by light and polarized-light microscopy, and the growth of buds was followed.

Key Results

Cambial reactivation and differentiation of vessel elements occurred sooner in heated seedlings than in non-heated seedlings before bud break. The combination of heating and disbudding of seedlings also resulted in earlier cambial reactivation and differentiation of first vessel elements than in non-heated seedlings. A few narrow vessel elements were formed during heating after disbudding, while many large earlywood vessel elements were formed in heated seedlings with buds.

Conclusions

The results suggested that, in seedlings of the deciduous ring-porous hardwood Quercus serrata, elevated temperature was a direct trigger for cambial reactivation and differentiation of first vessel elements. Bud growth was not essential for cambial reactivation and differentiation of first vessel elements, but might be important for the continuous formation of wide vessel elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号