首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We monitored femtosecond laser induced membrane potential changes in non-excitable cells using patchclamp analysis. Membrane potential hyperpolarization of HeLa cells was evoked by 780 nm, 80 fs laser pulses focused in the cellular cytoplasm at average powers of 30–60 mW. Simultaneous detection of intracellular Ca2+ concentration and membrane potential revealed coincident photogeneration of Ca2+ waves and membrane potential hyperpolarization. By using non-excitable cells, the cell dynamics are slow enough that we can calculate the membrane potential using the steady-state approximation for ion gradients and permeabilities, as formulated in the GHK equations. The calculations predict hyperpolarization that matches the experimental measurements and indicates that the cellular response to laser irradiation is biological, and occurs via laser triggered Ca2+ which acts on Ca2+ activated K+ channels, causing hyperpolarization. Furthermore, by irradiating the cellular plasma membrane, we observed membrane potential depolarization in combination with a drop in membrane resistance that was consistent with a transient laser-induced membrane perforation. These results entail the first quantitative analysis of location-dependent laser-induced membrane potential modification and will help to clarify cellular biological responses under exposure to high intensity ultrashort laser pulses.  相似文献   

2.
Circumferential stretch due to increases in pressure induces vascular smooth muscle cell depolarization and contraction known as the myogenic response. The aim of this study was to determine the in vivo effects of axial-longitudinal stretch of the rat saphenous artery (SA) on smooth muscle membrane potential (Em) and on external diameter. Consecutive elongations of the SA were carried out from resting length (L0) in 10% increments up to 140% L0 while changes in membrane potential and diameter were determined in intact and de-endothelized vessels. Axial stretching resulted in a small initial depolarization at 120% of L0 followed by a progressive 20 to 33% hyperpolarizaion of vascular smooth muscle between 130% and 140% of L0. At 140%, an average maximal 10.6 mV reversible hyperpolarization was measured compared to -41.2 +/- 0.49 mV Em at 100% L0. De-endothelialization completely eliminated the hyperpolarization to axial stretching and augmented the reduction of diameter beyond 120% L0. These results indicate that arteries have a mechanism to protect them from vasospasm that could otherwise occur with movements of the extremities.  相似文献   

3.
4.
The present study was designed to investigate the possible effects of peroxynitrite (ONOO(-)) on the intracellular calcium concentration ([Ca(2+)](i)) of mesenteric arteriolar smooth muscle cells (ASMCs), and to reveal the underlying mechanisms by using fluorescence imaging analysis. The results showed that ONOO(-) could exert a concentration- and time-dependent but also a dual effect on [Ca(2+)](i). Bolus administration with a low concentration of ONOO(-) (25 microM) decreased [Ca(2+)](i), whereas higher concentrations (50 or 100 microM) increased [Ca(2+)](i) persistently. Further experiments demonstrated that pretreatment of ASMCs with calcium-free medium completely abolished [Ca(2+)](i) increase by 100 microM ONOO(-). Additionally, nifedipine, an antagonist of selective L-type voltage-gated calcium channels (VGCCs), delayed the [Ca(2+)](i) response to ONOO(-), and ryanodine, an inhibitor of intracellular calcium release from the sarcoplasmic reticulum, effectively antagonized [Ca(2+)](i) increase during the late stage of ONOO(-) exposure. Furthermore, [Ca(2+)](i) alteration by ONOO(-) appeared to be intimately associated with the subsequent membrane potential changes. Although the mechanisms by which ONOO(-) alters [Ca(2+)](i) are complex, we conclude that a series of variables such as external calcium influx, activation of VGCCs, intracellular calcium release, and membrane potential changes are involved. The decrease of [Ca(2+)](i) in ASMCs by a low concentration of ONOO(-) may participate in the pathogenesis of low vasoreactivity in shock, and the increase of [Ca(2+)](i) by high concentrations of ONOO(-) may lead to calcium overload with cellular injury.  相似文献   

5.
An emerging body of evidence is accumulating to suggest that in vivo formation of free radicals in the vasculature, such as peroxynitrite (ONOO-), and programmed cell death (i.e., apoptosis) play important roles in vascular diseases such as atherosclerosis, hypertension, and restenosis. The present study was designed to determine whether primary rat aortic smooth muscle cells (SMCs) undergo apoptosis following treatment with ONOO-. Direct exposure of primary rat aortic SMCs to ONOO--induced apoptosis in a concentration-dependent manner, as confirmed by means of quantitative fluorescence staining and TUNEL assays. ONOO--induced apoptosis in rat aortic SMCs appears to involve activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis in rat aortic SMCs need to be further investigated, the present, preliminary findings could be used to suggest that ONOO- formation in the vasculature may play roles in the processes of vascular diseases, such as atherosclerosis, hypertension, and restenosis, via adverse actions on blood vessels.  相似文献   

6.
Summary Three-dimensional aspects of smooth muscle cells of the microvas-culature were studied ultrastructurally in laboratory rodents by means of serial thin sections and reconstruction of muscle cell models. It was demonstrated that a muscle cell of an arteriole (luminal diameter (LD) 17 m) in hamster striated muscle was spindle-shaped, 70 m long, and wound twice round the vessel axis. The volume of the cell was calculated as 750 m3 and its surface area as 1330 m2. A muscle cell in an arteriole (LD 6 m) in the rat retina was irregular in shape, about 22 m long, and had branched processes. The cell volume was calculated as 139 m3 and its surface area as 298 m2.  相似文献   

7.
It has been proposed that the increase produced by insulin in electrical potential differences across membranes of target cells may be a mechanism by which the cell surface insulin-receptor complex causes at least some of the metabolic effects of insulin. If insulin-induced hyperpolarization is a transducer of common effector responses it must precede those responses. The problem has not been addressed previously, so that rapid responses to insulin have not been sought. Two methods were used. In one method, the bathing solution was changed rapidly so as to include insulin in supramaximal concentrations, and a series of measurements of membrane potentials, Er, were made. Insulin hyperpolarized by 9.4 mV within 1 min. In the other method, nanoliter amounts of highly concentrated insulin solution were ejected from a micropipette onto the surface of an impaled muscle fiber. In 21 out of 32 insulin injections, hyperpolarization occurred within 1 s; in 11 control injections there was no change. This is the most rapid response to insulin yet reported, and is consistent with the hypothesis that insulin-induced hyperpolarization may transduce effector responses.  相似文献   

8.
The aim of this study was to determine whether the effects of hypoxia on aortic contractility reflect a decrease in smooth muscle activation [phosphorylation of the 20-kDa myosin regulatory light chain (LC(20))], the capacity for myofibrillar ATP hydrolysis (mATPase activity), or both. Our results indicate that, in endothelium-denuded aortic rings from rats exposed to hypoxia for 48 h (inspired O(2) concentration = 10%), contractions to phenylephrine and potassium chloride (KCl) are impaired compared with rings from normoxic rats. The proportion of phosphorylated to total LC(20) during aortic contraction induced by 10(-5) M phenylephrine was reduced after hypoxia (51.4 +/- 5.4% in normoxic control rats vs. 32.5 +/- 4.7% in hypoxic rats, P < 0.01). Aortic mATPase activity was also decreased (maximum ATPase rate = 29.6 +/- 3.4 and 20.7 +/- 3.7 nmol. min(-1). mg protein(-1) in control and hypoxic rats, respectively, P < 0.05). Neither proliferation nor dedifferentiation of aortic smooth muscle was evident in this model; immunostaining for smooth muscle expression of the proliferating cell nuclear antigen was negative and smooth muscle-specific isoforms of myosin heavy chains, h-caldesmon, and calponin were increased, not decreased, after hypoxic exposure. Decreased aortic reactivity after hypoxia is associated with both impairment of smooth muscle activation and diminished capacity of the actomyosin complex, once activated, to hydrolyze ATP. These changes cannot be attributed to smooth muscle dedifferentiation or to reduced contractile protein expression.  相似文献   

9.
Wang H  Meng QH  Chang T  Wu L 《Life sciences》2006,79(26):2448-2454
Methylglyoxal (MG), a highly reactive molecule, has been implicated in the development of insulin resistance. We investigated whether fructose, a precursor of MG, induced ONOO(-) generation and whether this process was mediated via endogenously increased MG formation. Fructose significantly increased MG generation in vascular smooth muscle cells (VSMCs) in a concentration and time dependent manner. The intracellular production of MG was increased by 153+/-23% or 259+/-28% after cells were treated 6 h with fructose (15 mM or 30 mM), compared with production from untreated cells (p<0.01, n=4 for each group). A significant increase in the production of ONOO(-), NO, and O(2)(*-), was found in the cells treated with fructose (15 mM) or MG (10 microM). Fructose- or MG-induced ONOO(-) generation was significantly inhibited by MG scavengers, including reduced glutathione or N-acetyl-l-cysteine, and by O(2)(*-) or NO inhibitors, such as diphenylene iodonium, superoxide dismutase or N-nitro-l-arginine methyl ester. Moreover, an enhanced iNOS expression was also observed in the cells treated directly with MG which was significantly inhibited when co-application with N-acetyl-l-cysteine. Our results demonstrated that fructose is capable of inducing a significant increase in ONOO(-) production, which is mediated by an enhanced formation of endogenous MG in VSMCs.  相似文献   

10.
Much of the damaging action of nitric oxide in heart may be due to its diffusion-limited reaction with superoxide to form peroxynitrite. Direct infusion of peroxynitrite into isolated perfused hearts fails to model the effects of in situ formation because the bulk of peroxynitrite decomposes before reaching the myocytes. To examine the direct effects of peroxynitrite on the contractile apparatus of the heart, we exposed intact and skinned rat papillary muscles to a steady state concentration of 4-microM peroxynitrite for 5 min, followed by a 30-min recovery period to monitor irreversible effects. In intact muscles developed force fell immediately to 26% of initial force, recovering to 43% by 30 min. Resting tension increased by 600% immediately, and was still elevated 500% by 30 min. Nitrotyrosine immunochemistry showed that peroxynitrite can induce tyrosine nitration at low concentrations and is capable of penetrating 200-380 microm into the papillary muscle after a 5-min infusion. Decomposed peroxynitrite had no effect on either intact or skinned muscle developed force or resting tension. Our results show that peroxynitrite directly damages both developed force and resting tension of isolated heart muscle, which can be extrapolated to systolic and diastolic injury in intact hearts.  相似文献   

11.
Stead S  Werstiuk ES  Lee RM 《Life sciences》2000,67(8):895-906
Apoptosis (programmed cell death) of smooth muscle cells (SMC) in blood vessels is an essential process involved in the control of vessel wall structure. Several antihypertensive drugs currently used in therapy may exert their pharmacological effects by promoting SMC apoptosis. The biochemical events which regulate SMC apoptosis in the vessel wall are complex, and not well understood. We therefore investigated whether treatment of cultured SMC from normotensive Wistar-Kyoto rats (WKY) and from spontaneously hypertensive rats (SHR) with selected antihypertensive drugs would induce SMC apoptosis. We treated aortic SMC from WKY and SHR in vitro with the L-type Ca2+ channel antagonist, nifedipine; with the nitric oxide donor, sodium nitroprusside (SNAP); with forskolin (an activator of adenylyl cyclase); or with thapsigargin (a selective inhibitor of the sarcoplasmic reticulum (SR), Ca2+-ATPase); and compared their apoptosis-promoting effects in SMC derived from the two strains of rats. SMC were derived from the thoracic aorta of 3-4-week-old WKY and SHR, and were used in passages 7-10. Apoptotic cells were detected by in-situ end labeling using the terminal deoxynucleotide transferase-mediated dUTP-nick end-labeling (TUNEL) method, and by morphological examination. We found that: 1) Treatment of cultured aortic SMC with the L-type Ca2+ channel antagonist, nifedipine (5 X 10(-5) M) for 24 hours induced a significantly higher level of apoptosis in SHR cells than in SMC from WKY. Cells from WKY, following exposure to nifedipine for 72 hours, exhibited a similar response to the cells from SHR treated for 24 hours. This was detectable by both morphological criteria as well as DNA labeling by the TUNEL technique. 2) Similar treatment of these cells with thapsigargin (1 x 10(-7) M) led to morphological alterations characteristic of apoptotic cells in SMC from both WKY and SHR, and cells from SHR but not WKY were labeled by the TUNEL technique at 24 hours. The TUNEL method did however identify cells from both WKY and SHR as apoptotic after 48 and 72 hours of treatment. 3) The addition of SNAP, or forskolin to the cultured SMC induced significant, but low levels of apoptosis in WKY SMC only. This selective apoptosis-promoting effect of nifedipine in SHR SMC may result from differences in the control of intracellular Ca2+ between the two strains of cells, or it may indicate that the signaling pathways which regulate apoptosis are different in SMC from the normotensive and the hypertensive rats. Our findings imply that SMC apoptosis may be a selective target for pharmacological intervention in hypertension.  相似文献   

12.
Restenosis represents a major impediment to the success of coronary angioplasty. Abnormal proliferation of vascular smooth muscle cells (VSMCs) has been shown to be an important process in the pathogenesis of restenosis. A number of agents, particularly rapamycin and paclitaxel, have been shown to impact on this process. This study was carried out to determine the mechanisms of cytotoxicity of goniothalamin (GN) on VSMCs. Results from MTT cytotoxicity assay showed that the IC(50) for GN was 4.4 microg/ml (22 microM), which was lower compared to the clinically used rapamycin (IC(50) of 25 microg/ml [27.346 microM]). This was achieved primarily via apoptosis where up to 25.83 +/- 0.44% of apoptotic cells were detected after 72 h treatment with GN. In addition, GN demonstrated similar effects as rapamycin in inhibiting VSMCs proliferation using bromodeoxyuridine (BrdU) cell proliferation assay after 72 h treatment at IC(50) concentration (p > 0.05). In order to understand the mechanisms of GN, DNA damage detection using comet assay was determined at 2h post-treatment with GN. Our results showed that there was a concentration-dependent increase in DNA damage in VSMCs prior to cytotoxicity. Moreover, GN effects were comparable to rapamycin. In conclusion, our data show that GN initially induces DNA damage which subsequently leads to cytotoxicity primarily via apoptosis in VSMCs.  相似文献   

13.
Probucol inhibits the proliferation of vascular smooth muscle cells in vitro and in vivo, and the drug reduces intimal hyperplasia and atherosclerosis in animals via induction of heme oxygenase-1 (HO-1). Because the succinyl ester of probucol, succinobucol, recently failed as an antiatherogenic drug in humans, we investigated its effects on smooth muscle cell proliferation. Succinobucol and probucol induced HO-1 and decreased cell proliferation in rat aortic smooth muscle cells. However, whereas inhibition of HO-1 reversed the antiproliferative effects of probucol, this was not observed with succinobucol. Instead, succinobucol but not probucol induced caspase activity and apoptosis, and it increased mitochondrial oxidation of hydroethidine to ethidium, suggestive of the participation of H(2)O(2) and cytochrome c. Also, succinobucol but not probucol converted cytochrome c into a peroxidase in the presence of H(2)O(2), and succinobucol-induced apoptosis was decreased in cells that lacked cytochrome c or a functional mitochondrial complex II. In addition, succinobucol increased apoptosis of vascular smooth muscle cells in vivo after balloon angioplasty-mediated vascular injury. Our results suggest that succinobucol induces apoptosis via a pathway involving mitochondrial complex II, H(2)O(2), and cytochrome c. These unexpected results are discussed in light of the failure of succinobucol as an antiatherogenic drug in humans.  相似文献   

14.
Raqeeb A  Sheng J  Ao N  Braun AP 《Cell calcium》2011,49(4):240-248
In blood vessels, stimulation of the vascular endothelium by the Ca(2+)-mobilizing agonist ATP initiates a number of cellular events that cause relaxation of the adjacent smooth muscle layer. Although vascular endothelial cells are reported to express several subtypes of purinergic P2Y and P2X receptors, the major isoform(s) responsible for the ATP-induced generation of vasorelaxant signals in human endothelium has not been well characterized. To address this issue, ATP-evoked changes in cytosolic Ca(2+), membrane potential and acute nitric oxide production were measured in isolated human umbilical vein endothelial cells (HUVECs) and profiled using established P2X and P2Y receptor probes. Whereas selective P2X agonist (i.e. α,β-methyl ATP) and antagonists (i.e. TNP-ATP and PPADS) could neither mimic nor block the observed ATP-evoked cellular responses, the specific P2Y receptor agonist UTP functionally reproduced all the ATP-stimulated effects. Furthermore, both ATP and UTP induced intracellular Ca(2+) mobilization with comparable EC(50) values (i.e. 1-3μM). Collectively, these functional and pharmacological profiles strongly suggest that ATP acts primarily via a P2Y2 receptor sub-type in human endothelial cells. In support, P2Y2 receptor mRNA and protein were readily detected in isolated HUVECs, and siRNA-mediated knockdown of endogenous P2Y2 receptor protein significantly blunted the cytosolic Ca(2+) elevations in response to ATP and UTP, but did not affect the histamine-evoked response. In summary, these results identify the P2Y2 isoform as the major purinergic receptor in human vascular endothelial cells that mediates the cellular actions of ATP linked to vasorelaxation.  相似文献   

15.
16.

Background

Dexamethasone suppressed inflammation and haemodynamic changes in an animal model of pulmonary arterial hypertension (PAH). A major target for dexamethasone actions is NF-κB, which is activated in pulmonary vascular cells and perivascular inflammatory cells in PAH. Reverse remodelling is an important concept in PAH disease therapy, and further to its anti-proliferative effects, we sought to explore whether dexamethasone augments pulmonary arterial smooth muscle cell (PASMC) apoptosis.

Methods

Analysis of apoptosis markers (caspase 3, in-situ DNA fragmentation) and NF-κB (p65 and phospho-IKK-α/β) activation was performed on lung tissue from rats with monocrotaline (MCT)-induced pulmonary hypertension (PH), before and after day 14–28 treatment with dexamethasone (5 mg/kg/day). PASMC were cultured from this rat PH model and from normal human lung following lung cancer surgery. Following stimulation with TNF-α (10 ng/ml), the effects of dexamethasone (10−8–10−6 M) and IKK2 (NF-κB) inhibition (AS602868, 0–3 μM (0-3×10−6 M) on IL-6 and CXCL8 release and apoptosis was determined by ELISA and by Hoechst staining. NF-κB activation was measured by TransAm assay.

Results

Dexamethasone treatment of rats with MCT-induced PH in vivo led to PASMC apoptosis as displayed by increased caspase 3 expression and DNA fragmentation. A similar effect was seen in vitro using TNF-α-simulated human and rat PASMC following both dexamethasone and IKK2 inhibition. Increased apoptosis was associated with a reduction in NF-κB activation and in IL-6 and CXCL8 release from PASMC.

Conclusions

Dexamethasone exerted reverse-remodelling effects by augmenting apoptosis and reversing inflammation in PASMC possibly via inhibition of NF-κB. Future PAH therapies may involve targeting these important inflammatory pathways.  相似文献   

17.
In the perfused rat liver, administration of glucagon causes a hyperpolarization of the liver cell membrane and increases gluconeogenesis. Insulin, a hormone which is known to antagonize the effect of glucagon on gluconeogenesis also blocks the hyperpolarizing effect of glucagon. Because of this inhibitory effect of insulin of the glucagon-evoked hyperpolarization, a systematic study of possible correlation between changes in membrane potential and gluconeogenesis was undertaken. The membrane potential was changed by valinomycin, tetracaine, or by varying the ionic composition of the perfusate. A highly significant correlation between changes in membrane potential and the rate of gluconeogenesis was noticed. The possibility was raised that changes in membrane potential might exert an influence on metabolic process by a yet unknown mechanism.  相似文献   

18.
Fan P  Li L  Liu ZJ  Si JQ  Zhang ZQ  Zhao L  Ma KT 《生理学报》2007,59(3):331-338
本文旨在探讨大鼠新鲜离体输精管平滑肌细胞中乙酰胆碱(acetylcholine,ACh)引起超极化反应的机制,采用细胞内微电极记录技术和细胞内荧光标记技术研究ACh对大鼠输精管不同走行方向平滑肌细胞的作用。用尖端含0.1%碘化吡啶(propidium iodide,PI)的记录电极标记电生理记录后的平滑肌细胞,其中37个为外层纵行细胞,17个为内层环行细胞。它们的平均静息膜电位分别为(-53.56±3.88)mV和(-51.62±4.27)mV,膜输入阻抗分别为(2245.60±372.50)MQ和(2101.50±513.50)MQ。ACh引起的膜超极化反应是浓度依赖性的,EC50为36 μmol/L。ACh引起的超极化反应可被非选择性的毒草碱(muscarinic receptor,M)受体阻断剂阿托品(atropine,1 μmol/L)和选择性的M3受体阻断剂diphenylacetoxy-N-methylpiperidine-methiodide(DAMP,100nmol/L)阻断。ACh引起的超极化还能被一氧化氮合酶抑制剂L-硝基-精氨酸甲酯(N-nitro-L-arginine methylester,L.NAME,300μmol/L)阻断,并可被ATP敏感的钾通道阻断剂glipizide(5μmol/L)或内向整流钾通道阻断剂钡离子(50μmol/L)部分阻断。Glipizide和钡离子联合使用可完全阻断ACh引起的超极化反应。上述结果表明:ACh通过作用于大鼠输精管平滑肌细胞膜上的M3受体引起超极化反应,一氧化氮、ATP敏感性钾通道和内向整流钾通道参与了ACh引起的超极化反应。  相似文献   

19.
Blood vessel dilation starts from activation of the Na/K pumps and inward rectifier K channels in the vessel smooth muscle cells, which hyperpolarizes the cell membrane potential and closes the Ca channels. As a result, the intracellular Ca concentration reduces, and the smooth muscle cells relax and the blood vessel dilates. Activation of the Na/K pumps and the membrane potential hyperpolarization plays a critical role in blood vessel functions. Previously, we developed a new technique, synchronization modulation, to control the pump functions by electrically entraining the pump molecules. We have applied the synchronization modulation electric field noninvasively to various intact cells and demonstrated the field-induced membrane potential hyperpolarization. We further applied the electric field to blood vessels and investigated the field induced functional changes of the vessels. In this paper, we report the results in a study of the membrane potential change in the smooth muscle cells of mesenteric blood vessels in response to the oscillating electric field. We found that the synchronization modulation electric field can effectively hyperpolarize the muscle membrane potential quickly in seconds under physiological conditions.  相似文献   

20.
Gao YJ  Stead S  Lee RM 《Life sciences》2002,70(22):2675-2685
Papaverine is a vasodilator commonly used in the treatment of vasospasmic diseases such as cerebral spasm associated with subarachnoid hemorrhage, and in the prevention of spasm of coronary artery bypass graft by intraluminal and/or extraluminal administration. In this study, we examined whether papaverine in the range of concentrations used clinically causes apoptosis of vascular endothelial and smooth muscle cells. Apoptotic cells were identified by morphological changes and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. In porcine coronary endothelial cells (EC) and rat aortic smooth muscle cells (SMC), papaverine at the concentration of 10(-3) M induced membrane blebbing within 1 hour of incubation. Nuclear condensation and fragmentation were found after 24 hours of treatment. The number of apoptotic cells stained with the TUNEL method was significantly higher in the EC and the SMC after 24 hours of incubation with papaverine at the concentrations of 10(-4) and 10(-3) M than their respective controls. Acidified saline solution (pH 4.8, as control for 10(-3) M papaverine hydrochloride) did not cause apoptosis in these cells. These results showed that papaverine could damage endothelial and smooth muscle cells by inducing changes which are associated with events leading to apoptosis. Since integrity of endothelial cells is critical for normal vascular function, vascular administration of papaverine for clinical use, especially at high concentrations (> or = 10(-4) M), should be re-considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号