首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Thyroid-related hormones regulate the efficiency and expression of sarco-endoplasmic reticulum calcium ATPases in cardiac and skeletal muscle. However, little is known about the relationship between thyroid hormones and calcium (Ca2+) homeostasis in the brain. It is hypothesized that manipulating rat thyroid hormone levels would induce significant brain Ca2+ adaptations consistent with clinical findings. Adult male Sprague-Dawley rats were assigned to one of three treatment groups for 28 days: control, hypothyroid (6-n-propyl-2-thiouracil (PTU), an inhibitor of thyroxine (T4) synthesis), and hyperthyroid (T4). Throughout, rats were given weekly behavioral tests. Ca2+ accumulation decreased in the cerebellum in both hyper- and hypothyroid animals. This was specific to different ER pools of calcium with regional heterogeneity in the response to thyroid hormone manipulation. Behavioral tasks demonstrated sensitivity to thyroid manipulation, and corresponded to alterations in calcium homeostasis. Ca2+ accumulation heterogeneity in chronic hyper- and hypothyroid animals potentially explains clinical manifestations of altered thyroid status.  相似文献   

2.
Serum and tissue Mg(2+) content are markedly decreased in diabetic patients and animals. At the tissue level, Mg(2+) loss progresses over time and affects predominantly heart, liver and skeletal muscles. In the present study, alterations in Mg(2+) homeostasis and transport in diabetic cardiac ventricular myocytes were evaluated. Cardiac tissue and isolated cardiac ventricular myocytes from diabetic animals displayed a decrease in total Mg(2+) content that affected all cellular compartments. This decrease was associated with a marked reduction in cellular protein and ATP content. Diabetic ventricular myocytes were unable to mobilize Mg(2+) following beta-adrenergic receptor stimulation or addition of cell permeant cyclic-AMP. Sarcolemma vesicles purified from diabetic animals, however, transported Mg(2+) normally as compared to vesicles from non-diabetic animals. Treatment of diabetic animals with exogenous insulin for 2 weeks restored ATP and protein levels as well as Mg(2+) homeostasis and transport to levels comparable to those observed in non-diabetic animals. These results suggest that in diabetic cardiac cells Mg(2+) homeostasis and extrusion via beta-adrenergic/cAMP signaling are markedly affected by the concomitant decrease in protein and ATP content. As Mg(2+) regulates numerous cellular enzymes and functions, including protein synthesis, these results provide a new rationale to interpret some aspects of the cardiac dysfunctions observed under diabetic conditions.  相似文献   

3.
We explored the possibility that the hormone 3,3',5-tri-iodothyronine can regulate the biosynthesis of the mitochondrial calcium uniporter. To meet this objective experiments on Ca(2+) transport, and binding of the specific inhibitor Ru(360) were carried out in mitochondria isolated from euthyroid, hyperthyroid and hypothyroid rats. It was found that V(max) for Ca(2+) transport increased from 11.67+/-0.8 in euthyroid to 14.36+/-0.44 in hyperthyroid, and decreased in hypothyroid mitochondria to 8.62+/-0.63 nmol Ca(2+)/mg/s. Furthermore, the K(i) for the specific inhibitor Ru(360), depends on the thyroid status, i.e. 18, 19 and 13 nM for control, hyper- and hypothyroid mitochondria, respectively. In addition, the binding of 103Ru(360) was increased in hyperthyroid and decreased in hypothyroid mitochondria. Scatchard analysis for the binding of 103Ru(360) showed the following values: 28, 40 and 23 pmol/mg for control, hyper- and hypothyroid mitochondria, respectively. The K(d) for 103Ru(360) was found to be 30.39, 37.03 and 35.71 nM for controls, hyper- and hypothyroid groups, respectively. When hypothyroid rats were treated with thyroid hormone, mitochondrial Ca(2+) transport, as well as 103Ru(360) binding, reached similar values to those found for euthyroid mitochondria.  相似文献   

4.
S Dho  T A Ansah  R M Case 《Cell calcium》1989,10(8):551-560
Thyroid hormones influence Ca2+ homeostasis in both skeletal and cardiac muscle. Since secretory cells, like muscle cells, store and use Ca2+ in stimulus-response coupling, we have studied the effects of thyroid status on Ca2+ mobilization and secretion in a model secretory tissue, the pancreatic acinar cell. Hyperthyroidism was induced by rats by daily, subcutaneous injections of triiodothyronine for 8 days and hypothyroidism by adding 6-n-propyl-2-thiouracil to the drinking water for 14 days. Pancreatic acini were prepared by collagenase digestion of pancreatic tissue from hyper- and hypo-thyroid animals and from euthyroid controls. Ca2(+)-mobilization was assessed using Quin-2 fluorescence and secretion by assaying amylase release. The data indicate that the amount of Ca2+ mobilized by the muscarinic agonist carbachol or by cholecystokinin octapeptide increases with increasing thyroid hormone concentrations. Only in hypothyroidism was this change in Ca2+ homeostasis reflected by a parallel change in amylase secretion. This implies the existence of some compensatory mechanism which stabilizes secretory rate in the face of stimulus-evoked increases in intracellular Ca2+ concentration.  相似文献   

5.
The actions of hormones which are associated to cAMP-dependent and calcium-dependent mechanisms of signal transduction were studied in hepatocytes obtained from rats with different thyroid states. In cells from euthyroid and hyperthyroid rats, the metabolic actions of epinephrine were mediated mainly through alpha 1-adrenoceptors; beta-adrenoceptors seem to be functionally unimportant. In contrast, both alpha 1- and beta-adrenoceptors mediate the actions of epinephrine in hepatocytes from hypothyroid animals. Phosphatidylinositol labeling was strongly stimulated by epinephrine, vasopressin and angiotensin II in cells from eu-, hyper- or hypothyroid rats. However, metabolic responsiveness to vasopressin and angiotensin II was markedly impaired in the hypothyroid state. The glycogenolytic response to the calcium ionophore A-23187 was also impaired, suggesting that hepatocytes from hypothyroid rats are less sensitive to calcium signalling. The persistence of alpha 1-adrenergic responsiveness in the hypothyroid state suggests that the mechanism of signal transduction for alpha 1-adrenergic amines is not identical to that of the vasopressor peptides. alpha 1-Adrenergic stimulation of cyclic AMP accumulation was not detected in cells from hypothyroid rats. These data suggest that factors besides calcium and besides cAMP are probably involved in alpha 1-adrenergic actions. Metabolic responses to glucagon and to the cAMP analogue dibutyryl cAMP were not markedly changed during hypothyroidism, although cAMP accumulation produced by glucagon and beta-adrenergic agonists was enhanced. In hyperthyroidism, cell responsiveness to epinephrine, vasopressin, angiotensin II and glucagon was decreased, but sensitivity to cAMP was not markedly altered. The factors involved in this hyposensitivity to hormones during hyperthyroidism are unclear.  相似文献   

6.
The effects of the thyroid state on oxidative damage, antioxidant capacity, susceptibility to in vitro oxidative stress and Ca(2+)-induced permeabilization of mitochondria from rat tissues (liver, heart, and gastrocnemious muscle) were examined. Hypothyroidism was induced by administering methimazole in drinking water for 15 d. Hyperthyroidism was elicited by a 10 d treatment of hypothyroid rats with triiodothyronine (10 micro g/100 g body weight). Mitochondrial levels of hydroperoxides and protein-bound carbonyls significantly decreased in hypothyroid tissues and were reported above euthroid values in hypothyroid rats after T(3) treatment. Mitochondrial vitamin E levels were not affected by changes of animal thyroid state. Mitochondrial Coenzyme Q9 levels decreased in liver and heart from hypothyroid rats and increased in all hyperthyroid tissues, while Coenzyme Q10 levels decreased in hypothyroid liver and increased in all hyperthyroid tissues. The antioxidant capacity of mitochondria was not significantly different in hypothyroid and euthyroid tissues, whereas it decreased in the hyperthyroid ones. Susceptibility to in vitro oxidative challenge decreased in mitochondria from hypothyroid tissues and increased in mitochondria from hyperthyroid tissues, while susceptibility to Ca(2+)-induced swelling decreased only in hypothyroid liver mitochondria and increased in mitochondria from all hyperthyroid tissues. The tissue-dependence of the mitochondrial susceptibility to stressful conditions in altered thyroid states can be explained by different thyroid hormone-induced changes in mitochondrial ROS production and relative amounts of mitochondrial hemoproteins and antioxidants. We suggest that susceptibilities to oxidants and Ca(2+)-induced swelling may have important implications for the thyroid hormone regulation of the turnover of proteins and whole mitochondria, respectively.  相似文献   

7.
Y Li  F Wang  X Zhang  Z Qi  M Tang  C Szeto  Y Li  H Zhang  X Chen 《PloS one》2012,7(7):e39965
The T-type Ca(2+) channel (TTCC) plays important roles in cellular excitability and Ca(2+) regulation. In the heart, TTCC is found in the sinoatrial nodal (SAN) and conduction cells. Cav3.1 encodes one of the three types of TTCCs. To date, there is no report regarding the regulation of Cav3.1 by β-adrenergic agonists, which is the topic of this study. Ventricular myocytes (VMs) from Cav3.1 double transgenic (TG) mice and SAN cells from wild type, Cav3.1 knockout, or Cav3.2 knockout mice were used to study β-adrenergic regulation of overexpressed or native Cav3.1-mediated T-type Ca(2+) current (I(Ca-T(3.1))). I(Ca-T(3.1)) was not found in control VMs but was robust in all examined TG-VMs. A β-adrenergic agonist (isoproterenol, ISO) and a cyclic AMP analog (dibutyryl-cAMP) significantly increased I(Ca-T(3.1)) as well as I(Ca-L) in TG-VMs at both physiological and room temperatures. The ISO effect on I(Ca-L) and I(Ca-T) in TG myocytes was blocked by H89, a PKA inhibitor. I(Ca-T) was detected in control wildtype SAN cells but not in Cav3.1 knockout SAN cells, indicating the identity of I(Ca-T) in normal SAN cells is mediated by Cav3.1. Real-time PCR confirmed the presence of Cav3.1 mRNA but not mRNAs of Cav3.2 and Cav3.3 in the SAN. I(Ca-T) in SAN cells from wild type or Cav3.2 knockout mice was significantly increased by ISO, suggesting native Cav3.1 channels can be upregulated by the β-adrenergic (β-AR) system. In conclusion, β-adrenergic stimulation increases I(Ca-T(3.1)) in cardiomyocytes(,) which is mediated by the cAMP/PKA pathway. The upregulation of I(Ca-T(3.1)) by the β-adrenergic system could play important roles in cellular functions involving Cav3.1.  相似文献   

8.
Resting oxygen consumption (VO2) and mitochondrial GDP binding were measured in hypothyroid and euthyroid rats after administration of selective and nonselective beta-adrenoceptor agonists (BRL 35135A and Isoprenaline--BRL, ISO). Resting VO2, VO2 increment and mitochondrial GDP binding after beta-agonists were lower in hypothyroid rats than in the euthyroid group. The reduced response was more marked for ISO than for BRL. These results suggest that BRL is acting on a beta-adrenoceptor which differs from beta-1 and beta-2 adrenoceptors, responsible for the effect of ISO. Activation of thermogenesis via this beta-3 adrenoceptor seems to be less dependent on permissive levels of thyroid hormones than on activation via beta-1 and/or beta-2 adrenoceptors.  相似文献   

9.
The changes in total Mg were compared with changes in cytosolic free Mg(2+) during metabolic stimulation of collagenase-dispersed rat cardiac myocytes or Langendorff-perfused rat hearts. In myocytes the addition of agents leading to cAMP increase or protein kinase C activation results in a loss or gain of more than 5% of total Mg content within 3 min (i.e., 3-4 nmol Mg/mg protein). Under the same conditions, changes in cytosolic free Mg(2+) measured with fluorescent indicator are small and result in changes of cytosolic free Mg(2+) equivalent to 90-140 microM. In perfused hearts, beta-adrenergic stimulation results in a loss of total Mg larger than 0.5 micromol per gram of heart corresponding to 9% loss of total Mg content of the heart (estimated to be 5.8 micromol). Under these conditions there is no change in cytosolic free Mg(2+) or the major buffer of cytosolic Mg(2+), ATP, as measured by (31)P NMR. These data suggest that a major redistribution of total Mg occurs in intracellular organelles or in cytosolic buffers in order to maintain cytosolic free Mg(2+) relatively unchanged during the observed cellular massive translocation of total Mg. Hence, Mg(2+) may regulate metabolic functions not within the cytosol but in locations where its concentration oscillates, such as extracellular fluid and intracellular compartments.  相似文献   

10.
The Na(+)/Ca(2+) exchanger protein is present in the cell membrane of many tissue types and plays key roles in Ca(2+) homeostasis, excitation-contraction coupling, and generation of electrical activity in the heart. The use of adult ventricular myocyte cell culture is important to molecular biological approaches to study the roles and modulation of the cardiac Na(+)/Ca(2+) exchanger. Therefore, we characterised the functional expression of the exchanger in adult guinea-pig ventricular myocytes maintained in short-term culture (for 4 days) and compared the response of ionic current (I(NaCa)) carried by the exchanger from acutely isolated and Day 4 cells to beta-adrenoceptor activation with isoproterenol (ISO). Functional activity of the exchanger was assessed by measuring I(NaCa) using whole cell patch clamp, under selective recording conditions. I(NaCa) amplitude measured at both +60 and -100mV declined significantly by Day 1 of cell culture, showing a further small decline by Day 4. However, cell surface area (assessed by measuring membrane capacitance) also declined over this time-frame. I(NaCa) normalised to membrane capacitance (I(NaCa) density) did not differ significantly between acutely isolated and cells cultured for 4 days. However, although ISO (1 microM) increased I(NaCa) in acutely isolated myocytes, it exerted no significant effect on I(NaCa) from Day 4 cells. This was not due to an inherent inability of these cells to respond to ISO, as L-type calcium current amplitude from Day 4 cells was increased by ISO to a similar extent as that from acutely isolated cells. Our data suggest that the functional expression of the Na/Ca exchanger is well maintained during short-term culture of adult ventricular myocytes. The lack of response to ISO of I(NaCa) from Day 4 cells suggests: (a) that, despite a well-maintained I(NaCa) density, cultured adult myocytes may not necessarily be suitable for studies of exchanger modulation by some agonists and (b) that there may exist subtle differences between beta-adrenergic regulation of the exchanger protein and of L-type Ca channels.  相似文献   

11.
Hepatic activities of cholesterol synthesis and cholesterol 7 alpha-hydroxylation were determined in hyper- and hypo-thyroid rats after oral administration of glucose or cholesterol. Increases in activities of both cholesterol synthesis and cholesterol 7 alpha-hydroxylation induced by glucose administration were enhanced by pretreatment with thyroid powder but suppressed by pretreatment with thiouracil. The enhancement of 7 alpha-hydroxylation was produced by a relatively small amount of thyroid powder, but high doses were required to increase cholesterol synthesis. On the other hand, the suppression of 7 alpha-hydroxylation was brought about by a low dose of thiouracil, but high doses were required to decrease cholesterol synthesis. Although cholesterol synthesis increased similarly in both hypo- and hyper-thyroid rats after glucose administration, hydroxylase activity in hypothyroid rats began to increase more slowly and was always lower than that in hyperthyroid rats. Thus it is concluded that cholesterol 7 alpha-hydroxylase activity is more sensitive to thyroid function than are activities of cholesterol-synthetic enzymes. When exogenous cholesterol was given, hypothyroid rats showed a larger increase in serum cholesterol concentration than hyperthyroid rats, and there was an inverse relationship between serum cholesterol concentrations and hepatic cholesterol 7 alpha-hydroxylase activities.  相似文献   

12.
3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.  相似文献   

13.
The goal was to assess whether salmeterol, a potent and long-acting beta-2-adrenergic agonist used in the treatment of asthma, also has non-beta-2-adrenergic effects on the stimulation or inhibition of adenylyl cyclase activity. Salmeterol (100 nM) maximally stimulated cAMP accumulation in enzyme dispersed bovine trachealis cells and this was entirely inhibited by propranolol, as expected for beta-adrenergic stimulation. However, the same concentration of salmeterol also antagonized carbachol inhibition of cAMP accumulation and altered binding of carbachol to muscarinic receptors. These effects of salmeterol were sensitive to washing of the cells and this was not consistent with a beta-2-adrenergic mechanism. The findings suggested that the maximal, beta-2-adrenergic stimulation of cAMP accumulation by salmeterol was accompanied by a non-beta-2-adrenergic interaction of salmeterol with muscarinic receptors that attenuated muscarinic inhibition of adenylyl cyclase.  相似文献   

14.
Massive Ca(2+) accumulation in mitochondria, plus the stimulating effect of an inducing agent, i.e., oxidative stress, induces the so-called permeability transition, which is characterized by the opening of a nonspecific pore. This work was aimed at studying the influence of thyroid hormone on the opening of such a nonspecific pore in kidney mitochondria, as induced by an oxidative stress. To meet this objective, membrane permeability transition was examined in mitochondria isolated from kidney of euthyroid and hypothyroid rats, after a period of ischemia/reperfusion. It was found that mitochondria from hypothyroid rats were able to retain accumulated Ca(2+) to sustain a transmembrane potential after Ca(2+) addition, as well as to maintain matrix NAD(+) and membrane cytochrome c content. The protective effect of hypothyroidism was clearly opposed to that occurring in ischemic reperfused mitochondria from euthyroid rats. Our findings demonstrate that these mitochondria were unable to preserve selective membrane permeability, except when cyclosporin A was added. It is proposed that the protection is conferred by the low content of cardiolipin found in the inner membrane. This phospholipid is required to switch adenine nucleotide translocase from specific carrier to a non-specific pore.  相似文献   

15.
Thyroid hormone exerts positive inotropic effects on the heart mediated in part by its regulation of calcium transporter proteins, including sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2), phospholamban (PLB), and Na(+)/Ca(2+) exchanger (NCX). To further understand the potential cardiac chamber-specific effects of thyroid hormone action, we compared the triiodo-L-thyronine (T(3)) responsiveness of calcium transporter proteins in atrial versus ventricular tissues. Rats were rendered hypothyroid by ingestion of propylthiouracil, and a subgroup of animals was treated with T(3) for 7 days (7 microg/day by constant infusion). Atrial and left ventricular (LV) tissue homogenates were analyzed for expression of SERCA2, PLB, and NCX proteins by Western blot analysis. SERCA2 protein significantly decreased by 50% in hypothyroid LV and was normalized by T(3) treatment. In contrast, SERCA2 protein in atria was unaltered in the hypothyroid state. PLB protein expression significantly increased by 1.6- and 5-fold in the hypothyroid LV and atria, respectively, and returned to euthyroid levels with T(3) treatment. Expression of NCX protein showed a greater response to T(3) treatment in atria tissue than in ventricular tissue. Sarcoplasmic reticulum calcium cycling is determined in part by the ratio of SERCA2 to PLB. This ratio was sixfold higher in the atria compared with LV, suggesting that PLB may play a minor role in the regulation of SERCA2 function in normal atria. We conclude that calcium transporter proteins are responsive to thyroid hormone in a chamber-specific manner, with atria showing a greater change in protein content in response to T(3). The differential effect on atria may account for the occurrence of atrial rather than ventricular arrhythmias in response to even mild degrees of thyrotoxicosis.  相似文献   

16.
The influence of thyroid hormone on the translational activity of specific cardiac mRNA was determined by in vitro translation of RNA isolated from the heart of normal, hypothyroid, and 3,3',5-triiodo-L-thyronine-injected hypothyroid rats. Proteins synthesized in vitro in the presence of [35S]methionine were separated by two-dimensional gel electrophoresis and quantitated by a novel scanning procedure using digital matrix photometry. A total of 421 translational products were detected by fluorography and changes in the predominance of 12 of these were influenced by the thyroid state of the animals. The relative predominance of 8 species was increased in euthyroid animals, whereas 4 translational products were increased in hypothyroid animals. The majority of these thyroid hormone-related alterations occurred in spot pairs of similar molecular weights, but slightly different isoelectric points. In contrast, the relative predominance of mRNAs coding for the major contractile proteins, light chain 1, light chain 2, tropomyosin, actin, and myosin heavy chain was not altered by the thyroid status of the animals. The relative levels of these abundant mRNA species remained unaltered in spite of a thyroid hormone-related increase in total RNA levels. In vivo effects of thyroid hormone on cardiac RNA levels are complex. In addition to a general increase in total RNA and mRNA levels, increases or attenuations in the predominance of a small number of specific mRNA species are observed when euthyroid and hypothyroid animals are compared.  相似文献   

17.
The effect of hyper- and hypothyroidism on lipid peroxidation has been studied in rat liver microsomes under three different experimental conditions. Under none of these conditions was the formation of TBA-reactive substances affected by either of these two pathological states. On the contrary, with NADPH as the only peroxidation inducer, hydroperoxide concentration increased some three fold in microsomes from hyperthyroid rats, while a small decrease was measured in those from hypothyroid animals. Similarly, the activity of NADPH-cytochrome P-450 reductase was found to be 45.1% higher in hyperthyroid and 40.3% lower in hypothyroid microsomes. The possibility discussed here is that two distinct peroxidative mechanisms (of which one, NADPH-cytochrome P-450 reductase-dependent, is influenced by the thyroid hormone) can compete with each other for the substrate polyunsaturated fatty acids.  相似文献   

18.
The cDNAs for types V and IX adenylyl cyclases were cloned from a chicken heart library and expressed in 293T cells (plasmid transfection) and in embryonic chick ventricular myocytes (adenovirus infection). Expression of type V or IX cyclases in 293T cells resulted in increases in basal and isoproterenol (ISO)-stimulated cAMP levels, whereas the expression of type V, but not type IX, cyclase increased forskolin (FK)-stimulated cAMP levels. Expression of type V cyclase in cardiac myocytes increased basal and FK-stimulated cAMP levels, variably increased ISO-stimulated cAMP levels, and decreased the content of beta-adrenergic receptors (betaARs). The expression of type IX cyclase in cardiac myocytes increased basal and ISO-elevated cAMP levels and, surprisingly, increased the cAMP-elevating effect of FK. The finding that FK responses are increased in cardiac myocytes but not in 293T cells expressing the type IX cyclase suggests that the host cell influences the properties of the type IX isozyme.  相似文献   

19.
Thyroid hormone regulation of flavocoenzyme biosynthesis   总被引:1,自引:0,他引:1  
The means by which thyroid hormone regulates flavocoenzyme biosynthesis was studied in hyper-, eu-, and hypothyroid rats by determining the activities of flavocoenzyme-forming enzymes, viz., flavokinase and FAD synthetase, as well as those of flavocoenzyme-degrading enzymes, viz., FMN phosphatase and FAD pyrophosphatase. Flavokinase activity was increased in hyperthyroid animal and decreased in hypothyroid animals. Correspondence of flavokinase activity with the amount of a high-affinity flavin-binding protein quantitated immunologically in hypo-, eu-, and hyperthyroid rats indicated that the thyroid response is caused by an increased amount of enzyme; moreover, the concomitant decrease in a low-affinity flavin-binding protein suggests an inactive precursor form of flavokinase. FAD synthetase activity showed a similar but less pronounced trend than flavokinase. Activities of FMN phosphatase and FAD pyrophosphatase were not influenced by thyroid hormone. Overall results indicate that the mechanism of thyroid hormone regulation of flavocoenzyme level is in the steps of biosynthesis, especially at flavokinase, rather than in degradation steps.  相似文献   

20.
Summary (1) Our earlier studies indicate a downsteam regulatory role of the β-adrenergic receptor (β-AR) system in thyroid hormone induced differentiation and maturation of astrocytes. In the present study we have investigated the contributions of the subtypes of β-AR in the above phenomenon. (2) Primary astrocyte cultures were grown under thyroid hormone deficient as well as under euthyroid conditions. [125I]Pindolol ([125I]PIN) binding studies showed a gradual increase in the specific binding to β2-AR when observed at 5, 10, 15, and 20 days under both cultural conditions. Thyroid hormone caused an increase in binding of [125I]PIN to β2-AR compared to thyroid hormone deficient controls at all ages of astrocyte culture. (3) Saturation studies using [125I]PIN in astrocyte membranes prepared from 20-day-old cultures showed a significant increase in the affinity of the receptors (K D) in the thyroid hormone treated cells without any change in receptor number (B max). (4) β2-AR mRNA levels were measured by real-time PCR during ontogenic development as well as during exposure of 10-day-old hypothyroid cultures to normal levels of thyroid hormone for 2, 6, 12, and 24 h. None of the conditions caused any significant change in the β2-adrenergic receptor mRNA levels when compared with corresponding hypothyroid controls. (5) Over expression of β2-AR cDNA in hypothyroid astrocytes caused morphological transformation in spite of the absence of thyroid hormone in the medium. (6) Taken together, results suggest thyroid hormone causes a selective increase in [125I]PIN binding to β2-AR due to increase in receptor affinity, which may lead to maturation of astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号