首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

2.
ATP and adenylylimidodiphosphate (AdoPP[NH]P) bind to (Na+ + K+)-ATPase in the absence of Mg2+ (EDTA present) with a homogeneous but 15-fold different affinity, the Kd values being 0.13 μM and 1.9 μM, respectively. The binding capacities of the two nucleotides are nearly equal and amount to 3.9 and 4 nmol/mg protein or 1.7 and 1.8 mol/mol (Na+ + K+)-ATPase, respectively. The Kd value for ATP is equal to the Km for phosphorylation by ATP (0.05–0.25 μM) and the binding capacity is equivalent to the phosphorylation capacity of 1.8 mol/mol (Na+ + K+)-ATPase. Hence, the enzyme contains two high-affinity nucleotide binding and phosphorylating sites per molecule, or one per α-subunit. Additional low-affinity nucleotide binding sites are elicited in the presence of Mg2+, as shown by binding studies with the non-phosphorylating (AdoPP[NH]P). The Kd and binding capacity for AdoPP[NH]P at these sites is dependent on the Mg2+ concentration. The Kd increases from 0.06 mM at 0.5 mM Mg2+ to a maximum of 0.26 mM at 2 mM Mg2+ and the binding capacity from 1.5 nmol/mg protein at 0.5 mM Mg2+ to 3.3 nmol/mg protein at 4 mM Mg2+. Extrapolation of a double reciprocal plot of binding capacity vs. total Mg2+ concentration yields a maximal binding capacity at infinite Mg2+ concentration of 3.8 nmol/mg protein or 1.7 mol/mol (Na+ + K+)-ATPase. The Kd for Mg2+ at the sites, where it exerts this effect, is 0.8 mM. The Kd for the high-affinity sites increases from 1.5–1.9 μM in the absence of Mg2+ to a maximum of 4.2 μM at 2 mM Mg2+ concentration. The binding capacity of these sites (1.8 mol/mol enzyme) is independent of the Mg2+ concentration. Hence, Mg2+ induces two low-affinity non-phosphorylating nucleotide binding sites per molecule (Na+ + K+)-ATPase in addition to the two high-affinity, phosphorylating nucleotide binding sites.  相似文献   

3.
Summary A new, sensitive and continuous assay for -glucosidase is described exploiting the different angles of rotation for the substrate maltose and the product glucose. Kinetic experiments revealed a very pronounced product inhibition of -glucosidase fromSaccharomyces carlsbergensis with a Ki of 4.85·10–3 M for glucose.The KM of maltose was found to be 37.8·10–3 M. Taking these values, an integral kinetic curve for the enzymatic hydrolysis of maltose was calculated, which is shown to fit the experimental data.Symbols used k1 (min–1) pseudo first-order rate constant (for enzymatic cleavage) - k2 (min–1) rate constant (for mutarotation reaction) - I, P (mol/1) inhibitor (product) concentration - ki (mmol/1) inhibitor constant - KM (mmol/l) Michaelis constant - [M] 589 30 (degree/m · l/mol) molecular rotation at 30°C and 589 nm - s (mmol/l) substrate concentration - R (mmol/mg · min) reaction rate - Vmax (mmol/mg · min) maximal rate - U (mol/min) activity unit (here at 30°C and pH=6.8) Indices O initial value - max maximal value  相似文献   

4.
Elementary K+ currents through cardiac outwardly rectifying K+ channels were recorded in insideout patches excised from cultured neonatal rat cardiocytes at 19 °C and at 9 °C. By studying the inhibitory effects of tetraethylammonium (TEA), quinidine and verapamil, the properties of this novel type of K+ channel were further characterized. Internal TEA (50 mmol/1) evoked a reversible decline of iunit to 62.7 + 2.7% of control (at –7 mV), without significant changes of open state kinetics, indicating a blockade of the open K+ pore with kinetics too fast to be resolvable at 1 kHz. This TEA blockade was e-fold voltage-dependent, with a decrease of the apparent KD( TEA) from 102 mmol/1 at –37 mV to 65 mmol/1 at +33 mV and, furthermore, became accentuated on lowering the internal K+ concentration. Thus, TEA competes with the permeant K+ for a site located in some distance from the cytoplasmic margin, within the K+ pore. Quinidine (100 mol/l), like verapamil (40 mol/1) reversibly depressed iunit to about 80% of the control value (at –7 mV), but drug-induced fast flicker blockade proved voltage-insensitive between –27 mV and +23 mV These drugs gain access to a portion of the pore distinct from the TEA binding site whose occupancy by drugs likewise blocks K+ permeation. Both drugs showed a greater potency to depress Po which, with quinidine,decreased reversibly to38.6 ± 11.1% (at –7 mV) and, with verapamil to 24.9 ± 9.1%(at –7 mV), mainly by an increase of the prolonged closed state (C,). This alteration of the gating process also includes a sometimes dramatic shortening of the open state. Most probably, cardiac K(outw.-rect.) +K+ outw.-rect. channels possess a second drug-sensitive site whose occupancy by quinidine or verapamil may directly or allosterically stabilize their non-conducting configuration. Correspondence to: M. Kohlhardt  相似文献   

5.
A third DNA polymerase 'C' with low molecular weight was isolated and purified 3700-fold from ground hyphae of Neurospora crassa WT 74 A, which shows similarities to beta- and gamma-polymerases from higher eukaryotes: preference for poly(rA)(dT) as a template/primer, inhibition by p-chloromercuribenzoate, resistance against N-ethylmaleimide up to 10 mmol/l, and molecular weight of about 40000. This polymerase elutes as a distinct peak from DEAE-cellulose at 0.60 mol/l KCl and has an optimum for K+ at 2-20 mmol/l, for Mn2+ at 0.8 mmol/l, for Mg2+ at 4.0 mmol/l, the pH optimum is 8.0. Its Km is 1.5 mumol/l using dTTP as substrate. The enzyme activity described here is free of endonuclease but contains detectable amounts of exonuclease.  相似文献   

6.
In the cyanic flowers ofDahlia variabilis (Asteraceae), an enzyme was demonstrated which catalyzes a glucosyl group transfer from UDP-glucose to the 5 position of anthocyanidin 3-O-glucoside and 3-O-malonylglucoside. The anthocyanin 5-O-glucosyltransferase (5GT) was purified 88-fold at 8 percnt; yield by (NH4)2SO4 precipitation followed by successive chromatography on DEAE-cellulose, Sephacryl S-200 and Mono P. 5GT exhibited a pH optimum at 8.0 and a pI of 4. 2. Its apparent molecular weight calculated from Sephacryl S-200 was 53 kDa. Its activity was stimulated by 2-ME and DTE but strongly inhibited by PCMB and NEM. It was slightly activated by Mg2+ and Ca2+ but strongly inhibited by Hg2+, Zn2+, Cu2+, Mn2+, Fe3+ and Al3+. No effect of EDTA was observed. The apparent Km values for cyanidin 3-O-glucoside, cyanidin 3-O-(6′′-O-malonyl)glucoside and UDP-glucose were 120 μmol/L, 75 μmol/L and 250 μmol/L, respectively. Pelargonidin 3-O-glucoside and malonylglucoside were also considerable substrates, but low relative activity was observed for delphinidin 3-O-glucoside which has yet not been found inDahlia flowers.Dahlia 5GT showed substrate specificities different from those reported forSilene, Petunia, Matthiola andPerilla. Neither ADP-glucose nor UDP-galactose could serve as glycosyl donor.  相似文献   

7.
The lobster (Homarus americanus) hepato-pancreatic epithelial baso-lateral cell membrane possesses three transport proteins that transfer calcium between the cytoplasm and hemolymph: an ATP-dependent calcium ATPase, a sodium-calcium exchanger, and a verapamil-sensitive cation channel. We used standard centrifugation methods to prepare purified hepato-pancreatic baso-lateral membrane vesicles and a rapid filtration procedure to investigate whether 65Zn2+ transfer across this epithelial cell border occurs by any of these previously described transporters for calcium. Baso-lateral membrane vesicles were osmotically reactive and exhibited a time course of uptake that was linear for 10–15 s and approached equilibrium by 120 s. In the absence of sodium, 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed the Michaelis-Menten equation for carrier transport. This carrier transport was stimulated by the addition of 150 M ATP (increase in Km and Jmax) and inhibited by the simultaneous presence of 150 mol l–1 ATP+250 mol l–1 vanadate (decrease in both Km and Jmax). In the absence of ATP, 65Zn2+ influx was a sigmoidal function of preloaded vesicular sodium concentration (0, 5, 10, 20, 30, 45, and 75 mmol l–1) and exhibited a Hill Coefficient of 4.03±1.14, consistent with the exchange of 3 Na+/1Zn2+. Using Dixon analysis, calcium was shown to be a competitive inhibitor of baso-lateral membrane vesicle 65Zn2+ influx by both the ATP-dependent (Ki=205 nmol l–1 Ca2+) and sodium-dependent (Ki=2.47 mol l–1 Ca2+) transport processes. These results suggest that zinc transport across the lobster hepato-pancreatic baso-lateral membrane largely occurred by the ATP-dependent calcium ATPase and sodium-calcium exchanger carrier proteins.Communicated by: I.D. Hume  相似文献   

8.
9.
Methylhippuric acid isomers (MHAs), urinary metabolites of xylenes, were determined, after clean-up by C18-SPE and esterification with hexafluoroisopropanol and diisopropylcarbodiimide, by GC with ECD detection, on an SPB-35 capillary column (30 m, 0.32 mm I.D., 0.25 μm film thickness, β=320). S-benzyl-mercapturic acid was used for internal standardization. Chromatographic conditions were: oven temperature 162°C, for 14.2 min; ramp by 30°C/min to 190°C, for 3.5 min; ramp by 30°C/min to 250°C, for 4 min; helium flow rate: 1.7 ml/min; detector and injector temperature: 300°C. The sample (1 μl) was injected with a split injection technique (split ratio 5:1). MHA recovery was >95% in the 0.5–20 μmol/l range; the limit of detection was <0.25 μmol/l; day-to-day precision, at 2 μmol/l, was Cv<10%. Urinary MHAs were determined in subjects exposed to different low-level sources of xylenes: (a) tobacco smoking habit and (b) BTX urban air pollution (airborne xylene ranging from 0.1 to 3.7 μmol/m3). Study (a) showed a significant difference between urinary MHA median excretion values of nonsmokers and smokers (4.6 μmol/l vs. 8.1 μmol/l, p<0.001). Study (b) revealed a significant difference between indoor workers and outdoor workers (4.3 μmol/l vs. 6.9 μmol/l, p<0.001), and evidenced a relationship between MHAs (y, μmol/mmol creatinine) and airborne xylene (x, μmol/m3) (y=0.085+0.34x; r=0.82, p<0.001, n=56). Proposed biomarkers could represent reliable tools to study very low-level exposure to aromatic hydrocarbons such as those observed in the urban pollution due to vehicular traffic or in indoor air quality evaluation.  相似文献   

10.
A tripeptidase from a cell extract of Lactococcus lactis subsp. cremoris Wg2 has been purified to homogeneity by DEAE-Sephacel and phenyl-Sepharose chromatography followed by gel filtration over a Sephadex G-100 SF column and a high-performance liquid chromatography TSK G3000 SW column. The enzyme appears to be a dimer with a molecular weight of between 103,000 and 105,000 and is composed of two identical subunits each with a molecular weight of about 52,000. The tripeptidase is capable of hydrolyzing only tripeptides. The enzyme activity is optimal at pH 7.5 and at 55°C. EDTA inhibits the activity, and this can be reactivated with Zn2+, Mn2+, and partially with Co2+. The reducing agents dithiothreitol and β-mercaptoethanol and the divalent cation Cu2+ inhibit tripeptidase activity. Kinetic studies indicate that the peptidase hydrolyzes leucyl-leucyl-leucine with a Km of 0.15 mM and a Vmax of 151 μmol/min per mg of protein.  相似文献   

11.
J. Gorham  J. Bridges 《Plant and Soil》1995,176(2):219-227
The optimum Ca2+ concentration for growth of cotton (Gossypium hirsutum cv. Acala SJ-2) was in the range 1 to 15 mol m–3 for plants growing in hydroponic culture with 100–150 mol m–3 NaCl. Most saline (but not sodic) soils contain higher Ca2+ concentrations. CaCl2 was inhibitory to the growth of cotton above 20–50 mol m–3. Increasing concentrations of Ca2+ in the range 0–2 mol m–2 drastically reduced Na+ accumulation in the leaves. As CaCl2 concentrations were increased above the optimum for growth there was a further reduction in leaf Na+ accumulation, but this was more than offset by increased leaf Ca2+ and Cl concentrations. Leaf K+ concentrations were not much affected by changes in external CaCl2 concentrations. The response of Mg2+ varied from an increase to a decrease with increasing external CaCl2 and was influenced by nutritional status. There was no evidence that high Ca2+ caused a deficiency of Mg2+ in cotton. Except for Cl, whose concentrations tended to decrease initially and then increase as the CaCl2 concentration increased, the anions were largely unaffected by changes in external CaCl2.  相似文献   

12.
Phytase activity in rabbit cecal bacteria   总被引:1,自引:0,他引:1  
The presence of phytase activity was demonstrated in 26 strains of rabbit cecal bacteria. In 25 strains a low phytase activity, 0.10–0.62 μmol phosphate released per min per mg protein, was found. High activity (2.61 μmol/min per mg protein) was found in the strain PP2 identified as Enterococcus hirae. Phytase activity was cell-associated, being higher in the cell extract than in the cell walls. Extracellular phytase activity and cell-associated phosphatase activity were not detected. Phytase activity was optimal around pH 5.0, which is below the physiological cecal pH range. The K m determined using the Lineweaver-Burk plot was 0.19 μmol/mL. Cations Fe3+, Cu2+ and Zn2+ at 0.5 mmol/L decreased phytase activity in sonicated cells of E. hirae by 99.4, 90.7 and 96.5 %, respectively. In contrast, Mg2+ increased activity by 11.0 %. Characteristics of E. hirae phytase (pH optimum, K m, cation sensitivity) were similar to those of other bacterial phytases reported in the literature. Other bacteria with a high phytase activity may be present in the rabbit cecum but remain to be identified.  相似文献   

13.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

14.
Three glutathione-S-transferase (GST) isozymes (Q1, Q2, and Q3) from the northern quahog (Mercinaria mercinaria) were purified and separated with a combination of affinity and ion exchange chromatography. SDS-PAGE analysis of the separated quahog GSTs indicated there are four distinct subunits of the enzyme with molecular masses ranging between 23 and 27 kDa. The electrophoretic analysis in combination with GST information from literature indicates that among the quahog GST isozymes, there is a single homodimer and two heterodimers. Enzymatic kinetic analysis of the homodimeric quahog GST (Q3) using 1-chloro-2,4-dinitrobenzene and glutathione as reactants resulted in V max and K m values of 33.2 mol min–1 mg–1 and 0.40 mM, respectively. A pH profile analysis of the Q3 GST indicates that the optimum catalytic pH is 7.6. The Q3 isozyme composes about 28% of the ion exchange purified GSTs but accounts for only 9% of the total GST enzymatic activity (25 mol min–1 mg–1). An analysis investigating the dependence of the Q3 GST activity on temperature resulted in a retention of enzymatic activity (50–30% at temperature extremes from –13°C to 100°C), suggesting a unconventional role for the Q3 GST in quahog metabolism.  相似文献   

15.
Proton-dependent, ethylisopropylamiloride (EIPA)-sensitive Na+ uptake (Na+/H+ antiporter) studies were performed to examine if saliva, and ionophores which alter cellular electrolyte balance, could influence the activity of the cheek cell Na+/H+ antiporter. Using the standard conditions of 1 mmol/1 Na+, and a 65:1 (inside:outside) proton gradient in the assay, the uniport ionophores valinomycin (K+) and gramicidin (Na+) increased EIPA-sensitive Na+ uptake by 177% (p < 0.01) and 227% (p < 0.01), respectively. The dual antiporter ionophore nigericin (K+-H+) increased EIPA-sensitive Na+ uptake by 654% (p < 0.01), with maximal Na+ uptake achieved by 1 min and at an ionophore concentration of 50 mol/l, with an EC 50 value 6.4 mol/l. Preincubation of cheek cells with saliva or the low molecular weight (MW) components of saliva (saliva activating factors, SAF) for 2 h at 37°C, also significantly stimulated EIPA-sensitive Na+ uptake. This stimulation could be mimicked by pre-incubation with 25 mmol/l KCl or K+-phosphate buffer. Pre-incubating cheek cells with SAF and the inclusion of 20 mol/1 nigericin in the assay, produced maximum EIPA-sensitive Na+ uptake. After pre-incubation with water, 25 mmol/1 K+-phosphate or SAF, with nigericin in all assays, the initial rate of proton-gradient dependent, EIPA-sensitive Na+ uptake was saturable with respect to external Na+ with Km values of 0.9, 1.7, and 1.8 mmol/l, and V max values of 13.4, 25.8, and 31.1 nmol/mg protein/30 sec, respectively. With 20 mol/1 nigericin in the assay, Na+ uptake was inhibited by either increasing the [K+]o in the assay, with an ID 50 of 3 mmol/l. These results indicate that nigericin can facilitate K+ i exchange for H+ o and the attending re-acidification of the cheek cell amplifies IINa+ uptake via the Na+/H+ antiporter. The degree of stimulation of proton-dependent, EIPA-sensitive Na+ uptake is therefore dependent, in part, on the intracellular K+ i.  相似文献   

16.
An N-acetyl-β-d-hexosaminidase has been purified from primary wheat leaves (Triticum aestivum L.) by freeze-thawing, (NH4)2SO4 precipitation, methanol precipitation, gel filtration, cation exchange chromatography and affinity chromatography on concanavalin A-Sepharose. The activity of the purified preparations could be stabilised by addition of Triton X-100 and the enzyme was stored at -20°C without significant loss of activity. The enzyme hydrolysed pNP-β-d-GlcNAc (optimum pH 5.2, Km 0.29 mM, Vmax 2.56 μkat mg−1) and pNP-β-d-GalNAc (optimum pH 4.4, Km 0.27 mM, Vmax 2.50 μkat mg−1). Five major isozymes were identified, with isoelectric points in the range 5.13–5.36. All five isozymes possessed both N-acety-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activity. Inhibition studies and mixed substrate analysis suggested that both substrates are catalysed by the same active site. Both activities were inhibited by GlcNAc, 2-acetamido-2-deoxygluconolactone, GalNAc and the ions of mercury, silver and copper. The Kis for inhibition of N-acetyl-β-d-glucosaminidase activity were: GlcNAc (15.3 mM) and GalNAc (3.4mM). For inhibition of N-acety-β-d-galactosaminidase activity the corresponding values were: GlcNAc (18.2 mM) and GalNac (2.5 mM). The enzyme was considerably less active at releasing pNP from pNP-β-d-(GlcNAc)2 and pNP-β-d-(GlcNAc)3 than from pNP-β-d-GlcNAc. The ability of the N-acetyl-β-d-hexosaminidase to relase GlcNAc from chitin oligomers (GlcNAc)2 (optimum pH 5.0) and (GlcNAc)3−6 (optimum pH 4.4) was also low. Analysis of the reaction products revealed that the initial products from the hydrolysis of (GlcNAc)n were predominantly (GlcNAc)n−1 and GlcNAc.  相似文献   

17.
A dipeptidase was purified to homogeneity from a crude cell extract of Streptococcus cremoris Wg2 by DEAE-Sephacel column chromatography followed by preparative disc gel electrophoresis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with a molecular weight of 49,000. The dipeptidase is capable of hydrolyzing a range of dipeptides, but not peptides with longer chains. The enzyme was shown to be a metallo-Mn2+ enzyme with a pH optimum of 8 and a temperature optimum of 50°C. The enzyme is strongly inhibited by thiol-reducing reagents but not by sulfhydryl reagents. Kinetic studies indicated that the enzyme has a relatively low affinity for leucyl-leucine and alanyl-alanine (Km, 1.6 and 7.9 mM, respectively) but can hydrolyze these substrates at very high rates (Vmax, 3,700 and 13,000 μmol/min per mg of protein, respectively).  相似文献   

18.
Laccase is a widespread group of multi-copper enzymes which can catalyze the oxidation of a variety of organic compounds, with concomitant reduction of molecular oxygen to water. It has a wide application in industrial processes, particularly in renewable bio-energy industry. In this study, Pleurotus ostreatus strain 10969 with high yield of laccase, previously isolated from edible fungus growing on Juncao, was applied for optimization of fermentation media and growth parameters for the maximal enzyme production through response surface methodology and further characterization of the laccase activity. The results show that glucose and Mg2+ are the key ingredients for laccase production with the optimum concentration of 0.0988 g/mL and 7.3 mmol/L respectively. Compared to the initial medium, the highest laccase yield observed is approximately increased by 2.5 times under the optimized conditions. Extracellular laccase was then purified and its characters were analyzed. The molecular weight of the laccase is about 40 kDa, and the optimum pH and temperature for its activity is 4.0 and 50 °C with the corresponding Km and Vmax of 0.31 mmol/L and 303.25 mmol/min respectively. DTT, β-mercaptoethanol and NaN3 nearly inhibit all activity of the laccase, as well as the metal ions especially Ag+. In summary, our results will facilitate the utilization of plant lignin in biomass energy industry.  相似文献   

19.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

20.
Oxidative deamination of putrescine, the precursor of polyamines, gives rise to γ-aminobutyraldehyde (ABAL). In this study an aldehyde dehydrogenase, active on ABAL, has been purified to electrophoretic homogeneity from rat liver cytoplasm and its kinetic behaviour investigated. The enzyme is a dimer with a subunit molecular weight of 51,000. It is NAD+-dependent, active only in the presence of sulphhydryl compounds and has a pH optimum in the range 7.3–8.4. Temperatures higher than 28°C promote slow activation and the process is favoured by the presence of at least one substrate. Km for aliphatic aldehydes decreases from 110 μM for ABAL and acetaldehyde to 2–3 μM for capronaldehyde. The highest relative V-values have been observed with ABAL (100) and isobutyraldehyde (64), and the lowest with acetaldehyde (14). Affinity for NAD+ is affected by the aldehyde present at the active site: Km for NAD+ is 70 μM with ABAL, 200 μM with isobutyraldehyde and capronaldehyde, and>800 μM with acetaldehyde. The kinetic behaviour at 37°C is quite complex; according to enzymatic models, NAD+ activates the enzyme (Kact 500 μM) while NADH competes for the regulatory site (Kin 70 μM). In the presence of high NAD+ concentrations (4 mM), ABAL promotes further activation by binding to a low-affinity regulatory site (Kact 10 mM). The data show that the enzyme is probably an E3 aldehyde dehydrogenase, and suggest that it can effectively metabolize aldehydes arising from biogenic amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号