首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The residual cell divisions after thymine starvation of exponential cultures of TJK16, a thymine-requiring derivative of Escherichia coli B/r, were evaluated. The results indicate that under the conditions used (glucose minimal medium 37 °), (1) only cells that had terminated a round of replication divided; (2) once termination had occurred, thymine starvation and replication no longer affected the time of cell division; (3) synchronously terminating subpopulations of cells began to divide about 17 min after termination; after that time, the rate of division decreased exponentially. The results confirm the previously inferred asymmetric distribution of D-periods in an exponential population of E. coli bacteria and suggest that an event associated with termination of replication is required for cell division. The method of data evaluation presented can be used to determine the duration of the D-period and to find the parameter values (halflife and onset) of the stochastic phase of the D-period in exponential cultures, eliminating the need for synchronization procedures.  相似文献   

2.
A paper pile filtration technique was used to obtain synchronously dividing populations of E. coli strains B and B/r from cultures in the exponential growth phase. Three generations of highly phased cell division were obtained by rapid pressure filtration which selected approximately 1 per cent of the exponentially growing culture. The sensitivity of E. coli strain B to x-ray and UV inactivation as a function of the cell division cycle was determined on synchronous populations. E. coli strain B showed a sharp decrease in sensitivity to inactivation by both radiations in the middle of the division cycle, and a further decrease near the end of the cycle. The sensitivity of E. coli strain B/r to x-irradiation was also investigated. Only the mid-cycle decrease in sensitivity was found during the division cycle of this strain. It was concluded that the repetition of the observed sensitivity patterns in both strains through the first three cycles after synchronization indicates that the same basic sensitivity patterns are probably also present in the individual cells of an exponential phase culture.  相似文献   

3.
A method using 5-bromouracil photolysis induction with 313 nm radiation was employed to estimate the variation in the period between successive rounds of DNA replication in rapidly growing cultures of Escherichia coliBrTT The coefficient of variation of this period was 9.3%, which is significantly less than the corresponding value of about 20% reported for variation in the cell interdivision period. Thus chromosome replication is much more tightly controlled than is cell division. The reduced variability of the DNA replication cycle indicates that the period (D) between termination of a round of DNA replication and cell division and the following period ending in initiation of the next round of DNA replication (B) are riot independent of each other but tend to have compensatory variations. The results suggest that other events in the cell cycle are related more closely to DNA replication rather than to the much less regular event of cell division.  相似文献   

4.
Thirty-nine cell division mutants were isolated in Escherichia coli K-12 and were mapped in the terminus region of the chromosome, between 33.5 and 36 min. They were obtained by two different approaches involving specific mutagenesis of the terC region. The mutants could be divided into eight classes (I to VIII) based on their map position and phenotype at the restrictive temperature, and constitute a new cell division gene cluster.  相似文献   

5.
Buchnera aphidicola, the endosymbiont of the aphid Schizaphis graminum, contains the gene ftsZ, which codes for a protein involved in the initiation of septum formation during cell division. With immunological techniques, this protein has been detected in cell-free extracts of the endosymbiont. Nucleotide sequence determination of a 6.4-kilobase B. aphidicola DNA fragment has indicated that, as in E. coli, ftsZ is adjacent to genes coding for other cell division proteins as well as genes involved in murein synthesis (murC–ddlB–ftsA–ftsZ). Although B. aphidicola ftsZ is expressed in E. coli, it cannot complement E. coli ftsZ mutants. High levels of B. aphidicola FtsZ results in the formation of long filamentous E. coli cells, suggesting that this protein interferes with cell division. The presence of FtsZ indicates that in this, as well as in many other previously described properties, B. aphidicola resembles free-living bacteria. Received: 22 July 1997 / Accepted: 28 July 1997  相似文献   

6.
Cell division and DNA synthesis were measured in synchronous cultures of E. coll B/r growing in glucose minimal medium at 37 °. The kinetic curves were analysed in order to find the variability of replication initiation, termination, and cell division events during the cell cycle. It is inferred that under the conditions used, cells begin to divide 17 min (D0 = minimum D-period) after each termination of chromosome replication with a constant probability per unit of time (half-life = 4·5–6 min). This randomness produces an asymmetric frequency distribution of D-periods, similar but mirror-symmetric frequency distributions of initiation and termination periods, a symmetric, non-Gaussian distribution of interdivision intervals, and complex kinetic changes in the rate of DNA synthesis as a function of cell age. The results suggest that replication and division are precisely controlled with respect to mass accumulation, and the apparent variability of cell cycle events would only result from the use of the time of cell separation as a reference point for the definition of cell age rather than initiation or termination of replication.  相似文献   

7.
Saccharomyces cerevisiae has been grown with different generation times by alterations in media richness and by altering the flow rate of the limiting nutrient, glucose in a chemostat. Within the generation time range 2.89-approx. 8.0 h the time from the initiation of DNA synthesis to cell division was independent of generation time and was approx. 2 h. Thus the cell cycle of yeast can be divided into an expandable phase from cell division to the initiation of DNA synthesis, the length of which is dependent on growth rate and a constant phase from the initiation of DNA synthesis to cell division which takes a constant time independent of generation time. In cells growing with generation times longer than 8.6 h this constant phase expands somewhat in time. These results are reminiscent of the observation that in the bacterium Escherichia coliB/R the time from initiation of DNA synthesis to cell division is constant except at very slow growth rates.  相似文献   

8.
A key event of the sporulation process in Bacillus subtilis is the asymmetric cell division that divides the developing cell into two unequal compartments. To examine the function of vegetative cell division genes in this developmental division, we isolated and characterized the B. subtilis counterpart to the Escherichia coli minicell operon minB, which governs correct placement of the division septum. Starting from the closely linked spo/VFlocus, we used walking methods to isolate the region of the B. subtilis chromosome proximate to the divlVB minicell locus. DNA sequence analysis found two open reading frames whose predicted products had significant identity to the E. coli MinC cell division inhibitor and the MinD ATPase activator of MinC, and disruption of minCD function generated a minicell phenotype in B. subtilis. Notably, no homologue to the E. coli MinE topological specificity element was found in the B. subtilis minCD region. The B. subtilis min genes were part of an operon transcribed from a major promoter more than 2.5 kb upstream from minC. An internal promoter immediately upstream from minC was dependent on RNA polymerase containing sigma-H and was active at the onset of sporulation. However, neither minCnor minD function was absolutely required for sporulation and, by implication, for asymmetric septum formation.  相似文献   

9.
In solutions containing DNA and cations of more than one type, the competitive interactions of these cations with DNA can be modeled as an ion exchange process that can be described quantitatively by means of the theoretical approach reported in this paper. Under conditions of experimental interest the radial distribution function of each type of counterion is calculated from the results of canonical Monte Carlo (MC) simulations using the primitive model for DNA (having a helical charge distribution) and for the electrolyte ions. These ions consist of monovalent coions, monovalent counterions intended to represent Na+, and counterions of a second type designated Mz+, having variable size and charge (z ≥ 1). The competitive association of these counterions with DNA is described in terms of D, a parameter analogous to an ion exchange equilibrium quotient. Values of D are calculated from the results of our MC simulations and compared with corresponding predictions of the Poisson–Boltzmann (PB) cell model and with results inferred from analyses of previously published nmr measurements. Over typical experimental concentration ranges (0.02M < [Na+] < 0.20M, 0.001 < [Mz+] < 0.160M), DMC and DPB both are predicted to be relatively independent of the bulk ion concentrations. For various specifications of the size and charge of the competing cation (Mz+), DMC and DPB exhibit similar trends, although the MC simulations consistently predict that the cations bearing a higher charge density than that of Na+ are somewhat stronger competitors than indicated by the PB calculations. For monovalent and divalent competitors of varying radii, theoretical predictions of D are compared with values obtained by fitting nmr measurements. If the hard-sphere radii specified in the simulations are the (hydrated) ionic radii determined from conductance measurements, then the MC predictions and the corresponding nmr results are in reasonable agreement for various monovalent competitors and for a divalent polyamine, but not for Ca2+ and Mg2+.  相似文献   

10.
Activity of Mg2+-dependent ATPase from the fraction of cell-free homogenate sedimenting at 35 000×g was studied during the growth and division ofEscherichia coli B. It decreased with the transition to stationary growth phase and after a specific inhibition of cell division. During the reversion of the division of filamentous forms the activity sharply increased; with the end of the reversion it dropped again to the level prior to the inhibition. The possible connection of the activity of Mg2+-dependent ATPase with the cell division ofEscherichia coli B is discussed.  相似文献   

11.
This article examines the empirical basis for the assumption of independence between the relative size (length or surface area) of a newborn cell w and the absolute size of its mother at cell division. Random samples from two strains of Escherichia coli B/r cells in steady-state exponential growth, covering a range of doubling times, were fixed in osmium tetroxide and prepared for electron microscopy by agar filtration. Length and diameter of over 3000 constricted cells were measured from the electron micrographs and cell surface area computed by assuming an idealized geometry of right circular cylinders with hemispherical polar caps. In general, these strains were found to divide into two daughter cells with a precision that is independent of the size of the mother. In addition, both a normal and a symmetrical beta-distribution were shown to fit the observed size distributions of w rather well; theoretical grounds for preferring the latter are discussed.  相似文献   

12.
Regulation of Cell Division in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
The rate of cell division was measured in cultures of Escherichia coli B/r strain after periods of partial or complete inhibition of deoxyribonucleic acid (DNA) synthesis. The rate of DNA synthesis was temporarily decreased by removing thymidine from the growth medium or replacing it with 5-bromouracil. After restoration of DNA synthesis, a temporary period of accelerated cell division was observed. The results were consistent with the idea that chromosome replication begins when an initiator complement of fixed size accumulated in the cell. The increase in the potential for the initiation of new replication points during inhibition of DNA synthesis results in an increase in the rate of cell division after an interval which encompasses the time for the arrival of these replication points to the termini of the chromosomes and the time from this event to division.  相似文献   

13.
Summary The capacity of E. coli B/r to support recombination and complementation between T4am phages during its life cycle has been analyzed in order to get information on the mechanism of cell division. It was found that a decrease in recombinants and complementation events, which is expected at the time of cell compartmentalization coincides with physical cell separation. Therefore, we conclude that the two halves of a dividing cell remain connected until a very late stage of the division period, thus allowing exchange of DNA and protein molecules.When a synchronized culture of E. coli B/r is infected at different cell age with phage T4, the number of surviving cells increases 10 min prior to cell division. At this time the cells are separated into two independent targets for killing by the phage, although there is still free exchange of DNA and proteins within the whole cell. The localized action of murein metabolizing enzymes at the site of subsequent cell division is likely to create a barriere within the cell envelope that prevents the propagation of the phage killing signal.  相似文献   

14.
The rod‐shaped bacterium Escherichia coli grows by insertion of peptidoglycan into the lateral wall during cell elongation and synthesis of new poles during cell division. The monofunctional transpeptidases PBP2 and PBP3 are part of specialized protein complexes called elongasome and divisome, respectively, which catalyse peptidoglycan extension and maturation. Endogenous immunolabelled PBP2 localized in the cylindrical part of the cell as well as transiently at midcell. Using the novel image analysis tool Coli‐Inspector to analyse protein localization as function of the bacterial cell age, we compared PBP2 localization with that of other E. coli cell elongation and division proteins including PBP3. Interestingly, the midcell localization of the two transpeptidases overlaps in time during the early period of divisome maturation. Försters Resonance Energy Transfer (FRET) experiments revealed an interaction between PBP2 and PBP3 when both are present at midcell. A decrease in the midcell diameter is visible after 40% of the division cycle indicating that the onset of new cell pole synthesis starts much earlier than previously identified by visual inspection. The data support a new model of the division cycle in which the elongasome and divisome interact to prepare for cell division.  相似文献   

15.
It is generally accepted that during fast growth of Escherichia coli, the time (D) between the end of a round of DNA replication and cell division is constant. This concept is not consistent with the fact that average cell mass of a culture is an exponential function of the growth rate, if it is also accepted that average cell mass per origin of DNA replication (Mi) changes with growth rate and negative exponential cell age distribution is taken into account. Data obtained from cell composition analysis of E. coli OV-2 have shown that not only (Mi) but also D varied with growth rate at generation times () between 54 and 30 min. E. coli OV-2 is a thymine auxotroph in which the replication time (C) can be lengthened, without inducing changes in , by growth with limiting amounts of thymine. This property has been used to study the relationship between cell size and division from cell composition measurements during growth with different amounts of thymine. When C increased, average cell mass at the end of a round of DNA replication also increased while D decreased, but only the time lapse (d) between the end of a replication round and cell constriction initiation appeared to be affected because the constriction period remained fairly constant. We propose that the rate at which cells proceed to constriction initiation from the end of replication is regulated by cell mass at this event, big cells having shorter d times than small cells.Abbreviations OD450 and OD630 Optical density at a given wavelength in nm Dedicated to Dr. John Ingraham to honor him for his many contributions to Science  相似文献   

16.
The binding of denatured B. stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the E. coli chaperonin GroEL was investigated in two systems: (1) GroEL immobilized on Sepharose via a single subunit was titrated with urea-denatured soluble GAPDH and (2) a Sepharose-bound denatured GAPDH monomer was titrated with soluble GroEL. Similar apparent K D values for the complex GroEL·GAPDH were obtained in both cases (0.04 and 0.03 M, respectively), the stoichiometry being 1.0 mol chaperonin per GAPDH subunit in the system with the immobilized GroEL and 0.2 mol chaperonin per Sepharose-bound GAPDH monomer. Addition of GroEL and Mg·ATP to a reactivation mixture increased the yield of reactivation of both E. coli and B. stearothermophilus GAPDHs. Incubation of the Sepharose-bound catalytically active tetrameric and dimeric GAPDH forms with the protein fraction of a wild-type E. coli cell extract resulted in the binding of GroEL to the dimer and no interaction with the tetrameric form. These data suggest that GroEL may be capable of interacting with the interdimeric contact regions of the folded GAPDH dimers.  相似文献   

17.
Summary The genetic mapping and fine structure analysis of the d-ribose gene in Escherichia coli B/r has been studied. Findings indicate that the structural genes for the d-ribokinase and d-ribose permease map closely linked to the ara-leu region of the chromosome in contrast to their location in the isoleucine-valine region at 73.5 min in E. coli K12. Two polarity mutants, AB7 and AB36, were found to map at the left end of the d-ribokinase gene thus supporting the proposed d-ribokinase-d-ribose permease operon for the d-ribose catabolic enzymes in E. coli B/r.  相似文献   

18.
Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.  相似文献   

19.
SYNOPSIS. Heat-synchronized cultures of Tetrahymena pyriformis strain GL subjected to pulses of high hydrostatic pressure (10,000 psi for 2 min) had increasing division delays during the 1st 40 min after the last heat shock (40 min after heat treatment). Pressure treatment during the subsequent 10-min interval disrupted cell synchrony. Comparable pressures applied to the cells at later stages, before the 1st synchronous division, caused negligible division delay. Continuous exposure to 10% (v/v) heavy water hardly affected division; higher concentrations delayed or blocked division. Ten-min pulses with heavy water (40%, 50%, 70%) resulted in increasing division delays depending on the stage of the cell cycle during which the heavy water was applied. Amelioration of the division-delaying effects of pressure was observed in cells treated simultaneously with pressure (3,000 psi for 30 min), and 30% D2O. The results are consistent with the hypothesis that some of the pressure and D2O effects could be attributed to changes in the sol-gel state of the cytoplasm.  相似文献   

20.
A terminal stage in the duplication of many bacterial plasmids involves the transient formation of catenated molecules containing two interlocked monomeric plasmid units. This property of plasmid replication was exploited to examine the relationship between F replication and the division cycle of Escherichia coli B/r cells growing in undisturbed, exponential-phase cultures. Various cultures of F′lac- or FKmr-containing cells were briefly exposed to [3H]thymidine, and then the transfer of radioactivity into, and out of, a catenated dimer consisting of two closed circular monomers was measured during a chase period. The fraction of plasmid molecules present in this dimer form was determined by separating cellular DNA in alkaline sucrose gradients. In addition, plasmid replication was studied in synchronously growing cultures by measuring both [3H]thymidine incorporation into covalently closed circular DNA and β-galactosidase inducibility. The results suggest that replication of F plasmids can take place throughout the cell division cycle, with the probability of replication increasing toward the end of the cycle. The presence of DNA homologous to the chromosome on the F′lac did not alter the replication pattern of the plasmid during the division cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号