首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water flow through the stem of an intact cucumber plant has been measured by using pulsed NMR. This method yields the linear flow velocity of the sapstream, found to be proportional to the loss of weight due to evaporation. The presence of a large excess of stationary water (for cucumber 95% of the total water content) does not interfere with the detection of a small amount of flowing water, due to cancellation of the NMR signal of stationary water. This makes the method particulary suitable for application to biological systems with a high stationary water content.  相似文献   

2.
For many decades X-ray myelography has remained one of the major diagnostic methods for spinal pathology. With the advent of computed tomography (CT), CT myelography using water-soluble contrast agents has been developed. Visualization of the subarachnoidal spaces of the spinal cord and dural sac without an intrathecal contrast agent has become possible with the emergence of magnetic resonance imaging (MRI). Its further development and improvement has brought to existence the new noninvasive technique MR myelography based on the suppression of a signal from the medulla and its enhancement from the cerebrospinal fluid-containing spaces. This paper compares routine X-ray myelography, CT myelography, and MR myelography used in the diagnosis of lumbosacral intervertebral disk herniation and assesses the informative value and benefits of MR myelography as a noninvasive diagnostic method for this pathology.  相似文献   

3.
Mallett CL  Foster PJ 《PloS one》2011,6(4):e18361

Introduction

MRI can be used to non-invasively monitor tumour growth and response to treatment in mouse models of prostate cancer, particularly for longitudinal studies of orthotopically-implanted models. We have optimized the balanced steady-state free precession (bSSFP) pulse sequence for mouse prostate imaging.

Methods

Phase cycling, excitations, flip angle and receiver bandwidth parameters were optimized for signal to noise ratio and contrast to noise ratio of the prostate. The optimized bSSFP sequence was compared to T1- and T2-weighted spin echo sequences.

Results

SNR and CNR increased with flip angle. As bandwidth increased, SNR, CNR and artifacts such as chemical shift decreased. The final optimized sequence was 4 PC, 2 NEX, FA 50°, BW ±62.5 kHz and took 14–26 minutes with 200 µm isotropic resolution. The SNR efficiency of the bSSFP images was higher than for T1WSE and T2WSE. CNR was highest for T1WSE, followed closely by bSSFP, with the T2WSE having the lowest CNR. With the bSSFP images the whole body and organs of interest including renal, iliac, inguinal and popliteal lymph nodes were visible.

Conclusion

We were able to obtain fast, high-resolution, high CNR images of the healthy mouse prostate with an optimized bSSFP sequence.  相似文献   

4.
5.
Monitoring tumor development is essential for the understanding of mechanisms involved in tumor progression and to determine efficacy of therapy. One of the evolving approaches is longitudinal noninvasive magnetic resonance imaging (MRI) of tumors in experimental models. We applied high-resolution MRI at 7 Tesla to study the development of colon cancer tumors in rat liver. MRI acquisition was triggered to the respiratory cycle to minimize motion artifacts. A special radio frequency (RF) coil was designed to acquire detailed T1-weighted and T2-weighted images of the liver. T2-weighted images identified hyperintense lesions representing tumors with a minimum diameter of 2 mm, enabling the determination of growth rates and morphological aspects of individual tumors. It is concluded that high-resolution MRI using a dedicated RF coil and triggering to the respiratory cycle is an excellent tool for quantitative and morphological analysis of individual diffusely distributed tumors throughout the liver. However, at present, MRI requires expensive equipment and expertise and is a time-consuming methodology. Therefore, it should preferably be used for dedicated applications rather than for high-throughput assessment of total tumor load in animals.  相似文献   

6.
A novel method for direct measurement of the state of skeletal muscle contraction is introduced called magnetic resonance elastography (MRE). Such a technique is useful for avoiding the indeterminacy inherent in most inverse dynamic models of the musculoskeletal system. Within a standard MRI scanner, mechanical vibration is applied to muscle via the skin, creating shear waves that penetrate the tissue and propagate along muscle fibers. A gradient echo sequence is used with cyclic motion-encoding to image the propagating shear waves using phase contrast. Individual muscles of interest are identified and the shear wavelength in each is measured. Shear wavelength increases with increasing tissue stiffness and increasing tissue tension.

Several ankle muscles were tested simultaneously in normal subjects. Applied ankle moment was isometrically resisted at several different foot positions. Shear wavelengths in relaxed muscle in neutral foot position was 2.34±0.47 cm for tibialis anterior (TA) and 3.13±0.24 cm for lateral gastrocnemius (LG). Wavelength increased in relaxed muscle when stretched (to 3.80±0.28 cm for TA in 45° plantar-flexion and to 3.95±0.43 cm for LG in 20° dorsi-flexion). Wavelength increased more significantly with contraction (to 7.71±0.97 cm in TA for 16 N m dorsi-flexion effort and to 7.90±0.34 cm in LG for 48 Nm plantar-flexion effort).

MRE has been shown to be sensitive to both passive and active tension within skeletal muscle making it a promising, noninvasive tool for biomechanical analysis. Since it is based on MRI technology, any muscle, however deep, can be interrogated using equipment commonly available in most health care facilities.  相似文献   


7.
19F nuclear magnetic resonance is used in conjunction with 5,5'-difluoro-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBapta), a fluorinated calcium chelator, to report steady-state intracellular free calcium levels ([Ca2+]i) in populations of resting, quiescent, isolated adult heart cells. 31P nuclear magnetic resonance shows that 5FBapta-loaded cells maintain normal intracellular high-energy phosphates, pH, and free Mg2+. The intracellular free calcium concentration of well perfused, isolated heart cells is 61 +/- 5 nM, measured with 5FBapta, which has a dissociation constant (Kd) for calcium chelation of 500 nM. A similar value is obtained with Quin-MF, another fluorinated calcium chelator with Kd and maximum calcium sensitivity at 80 nM. We find that the steady-state level of intracellular free calcium is increased by decreased extra-cellular sodium concentration, omission of extracellular magnesium, decreased extracellular pH, hyperglycemia, and upon treatment with lead acetate. Further, extracellular ATP caused a large transient increase in [Ca2+]i. Thus, while heart cells maintain a very low level of intracellular free Ca2+, acute alterations in extracellular environment can cause derangement of calcium homeostasis, resulting in measurable increases in [Ca2+]i.  相似文献   

8.
Proteins are dynamic molecules that often undergo conformational changes while performing their specific functions, such as target recognition, ligand binding and catalysis. NMR spectroscopy is uniquely suited to study protein dynamics, because site-specific information can be obtained for motions that span a broad range of time scales. The information obtained from NMR dynamics experiments has provided insights into specific structural changes or conformational energetics associated with molecular function. In the last decade, a number of new advancements in NMR methodologies have further extended our ability to characterize protein dynamics. Here, we present an overview of current NMR technology that is used to monitor the dynamic properties of proteins.  相似文献   

9.
Fast kinetic methods are used to measure reactions that take place in less time than required to mix the reagents manually and to measure the reaction by usual methods, like UV-visible spectrophotometry and fluorescence. The best known of them are rapid-mixing and relaxation methods, which are used for reactions with half-times in the millisecond and microsecond ranges, respectively. The picosecond range is usually measured with electrical field and ultrasonic waves (A. Cornish-Bowden, 1976, Principles of Enzyme Kinetics, pp. 164-167, Butterworths, London). Normally these very fast rates occur when a ligand binds to or dissociates from a protein. When the binding is mediated only by the diffusion, the lower limit of the association rate constant (k(on)) should not exceed the value of a diffusion-controlled reaction (around 10(10) M(-1) s(-1)). Therefore, the values most frequently found for these rate constants, for example, in the association of a substrate with an enzyme, are in the range 10(6) to 10(9) M(-1) s(-1) (M. Eigen and G. G. Hammes, 1963, Adv. Enzymol. 25, 1-38). The values for the dissociation rate constants (k(off)) for these reactions, which depend on the equilibrium constant for the enzyme-substrate complex interaction, are in the range 10(1) to 10(5) s(-1), most often between 10(3) and 10(4) s(-1) (A. Fersht, 1999, Structure and Mechanism in Protein Science, pp. 164-165, Freeman, New York). If the equilibrium constant is known, and the value of koff is determined by nuclear magnetic resonance (NMR), as described in this chapter, the value of k(on) can be calculated; this should not exceed the value of diffusion rate in the media in which the reaction is performed.  相似文献   

10.
11.
Muscle cross-section measurement by magnetic resonance imaging   总被引:1,自引:0,他引:1  
Muscle cross-section areas were measured by magnetic resonance imaging (MRI) in the thigh of a human cadaver, the results being compared with those obtained by photography of corresponding anatomic macroslices. A close correlation was found between MRI and photographic evaluation, differences between the methods ranging from nil to 9.5%, depending on the scan position and the muscle groups. In vivo MRI measurements were performed on 12 female and 16 male students, the objectivity, the test-retest reliability and the variability of the MRI measurements being studied by fixing the scan position either manually or by coronary scan. The latter method appeared to be more objective and reliable. The coefficients of variation for muscle cross-section areas measured by MRI were in the range of those for the planimetry of given cross-section areas. Allowing for differentiation between several small muscle bundles in a given area, MRI proved to be a suitable method to quantify muscle cross-sections for intra- and interindividual analysis of muscle size.  相似文献   

12.
A magnetic resonance (MR) imaging scanner operated at 0.5 T with a specially constructed receiving coil was used to measure volumes of primary spontaneous tumors in rats and guinea pigs. The coil was used to improve the signal to noise ratio (S/N) of the MR images of tumors in these small animals. The tumor volume was determined by the summation of the volume of contiguous slices or ellipsoid approximation. The accuracy of the volume measurement was better when the numerical integration was used in calculating the slice volume. The open sided saddle (OSS) coil used as the receiving coil gave better S/N than that of the standard head coil.  相似文献   

13.
10B-enriched L-p-boronophenylalanine (BPA) is one of the compounds used in boron neutron capture therapy (BNCT). In this study, several variations of nuclear magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) were applied to investigate the uptake, clearance and metabolism of the BPA-fructose complex (BPA-F) in normal mouse kidneys, rat oligodendroglioma xenografts, and rat blood. Localized 1H MRS was capable of following the uptake and clearance of BPA-F in mouse kidneys with temporal resolution of a few minutes, while 1H MRSI was used to image the BPA distribution in the kidney with a spatial resolution of 9 mm3. The results also revealed significant dissociation of the BPA-F complex to free BPA. This finding was corroborated by 1H and 11B NMR spectroscopy of rat blood samples as well as of tumor samples excised from mice after i.v. injection of BPA-F. This investigation demonstrates the feasibility of using 1H MRS and MRSI to follow the distribution of BPA in vivo, using NMR techniques specifically designed to optimize BPA detection. The implementation of such procedures could significantly improve the clinical efficacy of BNCT.  相似文献   

14.
15.
16.
High resolution strain measurements are of particular interest in load bearing tissues such as the intervertebral disc (IVD), permitting characterization of biomechanical conditions which could lead to injury and degenerative outcomes. Magnetic resonance (MR) imaging produces excellent image contrast in cartilaginous tissues, allowing for image-based strain determination. Nonrigid registration (NRR) of MR images has previously demonstrated sub-voxel registration accuracy although its accuracy and precision in determining strain has not been evaluated. Accuracy and precision of NRR-derived strain measurements were evaluated using computer generated deformations applied to both computer generated images and MR images. Two different measures of registration similarity--the cost function which drives the registration algorithm--were compared: Mutual Information (MI) and Least Squares (LS). Strain error was evaluated with respect to signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and strain heterogeneity. Additionally, the creep strain response from an in vitro loaded porcine IVD is shown and comparisons between similarity measures are presented. MI showed a decrease in strain precision with increasing CNR and decreasing SNR while LS was insensitive to both. Both similarity measures showed a decrease in strain precision with increasing strain heterogeneity. When computer generated heterogeneous strains were applied to MR images of the IVD, LS showed substantially lower strain error in comparison to MI. Results suggest that LS-driven NRR provides a more accurate image-based method for mapping large and heterogeneous strain fields and this method can be applied to studies of the IVD and, potentially, other soft tissues which present sufficient image texture.  相似文献   

17.
Surveying the plant's world by magnetic resonance imaging   总被引:1,自引:0,他引:1  
Understanding the way in which plants develop, grow and interact with their environment requires tools capable of a high degree of both spatial and temporal resolution. Magnetic resonance imaging (MRI), a technique which is able to visualize internal structures and metabolites, has the great virtue that it is non-invasive and therefore has the potential to monitor physiological processes occurring in vivo. The major aim of this review is to attract plant biologists to MRI by explaining its advantages and wide range of possible applications for solving outstanding issues in plant science. We discuss the challenges and opportunities of MRI in the study of plant physiology and development, plant-environment interactions, biodiversity, gene functions and metabolism. Overall, it is our view that the potential benefit of harnessing MRI for plant research purposes is hard to overrate.  相似文献   

18.
Ice formation of a 20% w/v sucrose solution was monitored during the freezing process by magnetic resonance imaging (MRI). An original experimental setup was designed with oil as a cooling fluid that allows accurate control of the temperature. The NMR signal intensity of particular sampled volumes was observed during the entire cooling period, from 0 to -50 degrees C, showing a peak characteristic to a transition before the loss of the signal. Moreover, spatial ice distribution of the frozen matrix was observed by high resolution MRI with an isotropic resolution of 78x78x78microm(3). MRI has proved to be a novel technique for determining the glass transition temperature of frozen sucrose solutions, in the concentration range where calorimetric measurements are not feasible.  相似文献   

19.
Determination of the concentration of biochemical samples often yields values with uncertainties of 10-20% or more. This paper details a protocol for use with 500- to 600-MHz NMR spectrometers to measure approximately 1mM concentrations within +/-1-3% accuracy. With suitable precautions, all compounds have equal NMR "absorption coefficients" for protons. About 2mg of sample are needed for proteins and nucleic acids with MW=5000, although less accurate determinations could be made with smaller amounts. The technique utilizes standardized internal reference reagent compounds, cacodylic acid or 3-(trimethylsilyl)propionic-2,2,3,3-d(4) acid sodium salt. Spectra were signal-averaged using long interpulse delays so that integrals of nonexchangeable protons could be quantified relative to the reference standard. Accurate determinations require careful optimization of the homogeneity of the magnetic field and meticulous attention to sample preparation and spectral processing. The main source of error is usually the accuracy of micropipets. If sample preparation errors could be eliminated, the lower limit of accuracy with the current generation of NMR spectrometers is probably near 0.4%. However, this would require >99.5% sample purity. Methods are described to establish the concentration of the standards, and applications are illustrated with DNA mono- and oligonucleotides. Similar procedures should apply to proteins, polysaccharides, and other biomolecules, with about the same accuracy and precision.  相似文献   

20.
High-resolution 270-MHz proton nuclear magnetic resonance (NMR) spectra of the native two-zinc insulin hexamer at pH 9 have been obtained, and assignments of key resonances have been made. Spectra of zinc-free insulin titrated with Zn2+ are unchanged after the addition of 1 equiv of zinc per insulin hexamer, indicating that the conformation of the hexamer is fixed at this point and that the second zinc ion does not significantly change the conformation. Titration of the two-zinc insulin hexamer with anions high on the Hofmeister series such as SCN- causes marked changes in the NMR spectra which are interpreted as the result of major conformational changes to a new hexameric form of insulin having a twofold axis perpendicular to the threefold axis. Analysis of difference spectra indicates that this new hexamer (which should be capable of binding six zinc ions) binds 2 equiv of SCN- at two sites which are assumed to be identical and independent (K1 = 10(3), K2 = 2.5 X 10(2) M-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号