首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Chl–protein complexes were isolated from thylakoid membranes of Bryopsis maxima and Ulva pertusa, marine green algae that inhabit the intertidal zone of the Pacific Ocean off the eastern coast of Japan by dodecyl-β-d-maltoside polyacrylamide gel electrophoresis. The slowest-moving fractions showed low Chl a/b and Chl/P-700 ratios, indicating that this fraction corresponds to complexes in PS I, which is large in both algae. The intermediate and fastest-moving fractions showed the traits of PS II complexes, with some associated Chl a/b–protein complexes and LHC II, respectively. The spectral properties of the separated Chl–proteins were also determined. The absorption spectra showed a shallow shoulder at 540 nm derived from siphonaxanthin in Bryopsis maxima, but not in Ulva pertusa. The 77 K emission spectra showed a single peak in Bryopsis maxima and two peaks in Ulva pertusa. Besides the excitation spectra indicated that the excitation energy transfer to the PS I complexes differed quite a lot higher plants. This suggested that the mechanisms of energy transfer in both of these algae differ from those of higher plants. Considering the light environment of this coastal area, the large size of the antennae of PS I complexes implies that the antennae are arranged so as to balance light absorption between the two photosystems. In addition, we discuss the relationships among the photosystem stoichiometry, the energy transfer, and the distribution between the two photosystems.  相似文献   

2.
The molar ratios of chlorophyll a to b in the thalli of marine green algae were between 1.5 and 2.2, being appreciably lower than the ratio between 2.8 and 3.4 found for the leaves of higher plants and the cells of fresh-water green algae. The ratio of chlorophylls to P-700 in these marine algae was also lower than that in higher plants. The a/b ratios in the pigment proteins of Photosystems 1 and 2 separated by polyacrylamide-gel electrophoresis from sodium dodecyl sulfate-solubilized chloroplasts of four species of marine green algae, Bryopsis maxima, Cheatomorpha spiralis, Enteromorpha compressa and Ulva conglobata, were approximately 5 and 1, which are considerably smaller than the ratios, 7 and 2, respectively, found for the pigment proteins of the two photosystems of higher plants separated by the same technique. The chloroplasts of Bryopsis maxima and Cheatomorpha spiralis lacked two of the peptides associated with Photosystem II, which are present in the chloroplasts of Spinacia oleracea and Taraxacum officinale.  相似文献   

3.
The molar ratios of chlorophyll a to b in the thalli of marine green algae were between 1.5 and 2.2, being appreciably lower than the ratio between 2.8 and 3.4 found for the leaves of higher plants and the cells of fresh-water green algae. The ratio of chlorophylls to P-700 in these marine algae was also lower than that in higher plants. The ab ratios in the pigment proteins of Photosystems 1 and 2 separated by polyacrylamide-gel electrophoresis from sodium dodecyl sulfate-solubilized chloroplasts of four species of marine green algae, Bryopsis maxima, Cheatomorpha spiralis, Enteromorpha compress and Ulva conglobata, were approximately 5 and 1, which are considerably smaller than the ratios, 7 and 2, respectively, found for the pigment proteins of the two photosystems of higher plants separated by the same technique. The chloroplasts of Bryopsis maxima and Cheatomorpha spiralis lacked two of the peptides associated with Photosystem II, which are present in the chloroplasts of Spinacia oleracea and Taraxacum officinale.  相似文献   

4.
properties, pigment compositions, Chl a/b ratios and apparent molecular weights of chlorophyll-protein complexes were compared between spinach and a marine green alga, Bryopsis corticulans. The results are as follows: 1. Ten chlorophyll-protein complexes were resolved from spinach thylakoid membranes solubilized by SDS in a final SDS/Chl weight ratio of 10:1, and subjected to SDS-PAGE with 11% resolution gel. CPIa 1–3 and CPI belonged to photosystem Ⅰ, and the rest to phorosystem Ⅱ. The maximum absorption of CPIa2, CPIas and CPI were all at 674nm, but that of CPIa1 at 670nm, and those of LHCII and D2 at 670 and 673nm, respectively. Chlorophyll ia PSⅡ was 63% of the total. In PSⅡ, most of chlorophyll was in LHCII which contained 86% of the chlorophyll in PSⅡ. In PSⅠ, chlorophyll in CPla was 72% of the total. Chlorophyll a was the main pigment in PSⅠ components which have Chl a/b ratio over 15. 2. Eight chlorophyll-protein complexes were isolated from B. corticulans with a SDS/Chi weight ratio of 8:1 and 8% resolution gel. The maximum absorption of CPIa, CPI, LHCII and D2 were respectively at 671nm, 673nm, 669nm and 664nm. PSⅡ contained 77% of the total chlorophyll. LHCII chlorophyll was 95% of the PSⅡ chlorophyll. CPI held 77% of PSⅠ chloro~ phyll. There was more chlorophyll b in Bryopsis complexes, especially in LHCI1 (Chl a/b< 0.8). The molecular weights of Bryopsis complexes were higher than those of the spinach complexes. Bryopsis LHCII contained siphoxanthin and siphothin, the marked pigments of Siphohales, as functional pigments. The above results revealed three points of difference between these two plants. Firstly, Chl a is the main pigment in spinach, whereas in Bryopsis the main pigments are Chl b and siphoxanthin. This is in accordance with the suggestion that plants may change their pigment composition to adapt light regime in the environment during evolution. Secondly, in Bryopsis, chlorophyll is concentrated in photosystem Ⅱ, but in spinach chlorophyll is shared evenly by two photosystems. Finally, CPI in Bryopsis contained the major part of chlorophyll in PSⅠ, yet in spinach CPIa is the superior.  相似文献   

5.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

6.
Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells grown under a high intensity light condition (1,500 micromol quanta m(-2) s(-1)). LHC-L and LHC-H1 showed an apparent particle size of 310 kDa and contained four polypeptides of 31, 30, 29 and 28 kDa. LHC-H2, with a particle size of 110 kDa, consisted of 30 and 28 kDa polypeptides. LHC-L contained 7.5 molecules of Chl a, 3.2 of Chl b and 2.1 of lutein per polypeptide, analogous to the content in higher plants. LHC-H1, with 5.6 molecules of Chl a, 2.5 of Chl b and 1.8 of lutein per polypeptide was similar to that in the green alga Bryopsis maxima. LHC-L and LHC-H1 maintained high efficiency energy transfer from Chl b and lutein to Chl a molecules. LHC-H2 showed a high Chl a/b ratio of 7.5 and contained 3.4 molecules of Chl a, 0.5 of Chl b and 1.4 of lutein per polypeptide. Chl b and lutein could not completely transfer the excitation energy to Chl a in LHC-H2.  相似文献   

7.
管藻目绿藻叶绿素蛋白复合物特性及比较研究   总被引:3,自引:0,他引:3  
By mild PAGE method, 11, 11, 7 and 9 chlorophyll-protein complexes were isolated from two species of siphonous green algae (Codium fragile (Sur.) Hariot and Bryopsis corticulans Setch.), green alga (Ulothrix flacca (Dillw.) Thur.), and spinach (Spinacia oleracea Mill.), respectively. Apparent molecular weights, Chl a/b ratios, distribution of chlorophyll, absorption spectra, low temperature fluorescence spectra of these complexes were determined, and compared with one another. PSⅠ complexes of two siphonous green algae are larger in apparent molecular weight because of the attachment of relative highly aggregated LHCⅠ. Four isolated light-harvesting complexes of PSⅡ are all siphonaxanthin-Chl a/b-protein complexes, and they are not monomers and oligomers like those in higher plants. Especially, the absence of 730 nm fluorescence in PSⅠ complexes indicates a distinct structure and energy transfer pattern.  相似文献   

8.
Antenna systems of plants and green algae are made up of pigment-protein complexes belonging to the light-harvesting complex (LHC) multigene family. LHCs increase the light-harvesting cross-section of photosystems I and II and catalyze photoprotective reactions that prevent light-induced damage in an oxygenic environment. The genome of the moss Physcomitrella patens contains two genes encoding LHCb9, a new antenna protein that bears an overall sequence similarity to photosystem II antenna proteins but carries a specific motif typical of photosystem I antenna proteins. This consists of the presence of an asparagine residue as a ligand for Chl 603 (A5) chromophore rather than a histidine, the common ligand in all other LHCbs. Asparagine as a Chl 603 (A5) ligand generates red-shifted spectral forms associated with photosystem I rather than with photosystem II, suggesting that in P. patens, the energy landscape of photosystem II might be different with respect to that of most green algae and plants. In this work, we show that the in vitro refolded LHCb9-pigment complexes carry a red-shifted fluorescence emission peak, different from all other known photosystem II antenna proteins. By using a specific antibody, we localized LHCb9 within PSII supercomplexes in the thylakoid membranes. This is the first report of red-shifted spectral forms in a PSII antenna system, suggesting that this biophysical feature might have a special role either in optimization of light use efficiency or in photoprotection in the specific environmental conditions experienced by this moss.  相似文献   

9.
We investigated the composition and organization of chlorophylls in monomers, trimers and oligomers (small aggregates) of the main light-harvesting complex (LHC II) isolated from marine alga, Bryopsis corticulans, using a combination of measurements with reversed-phase high performance liquid chromatography (RP-HPLC) and steady-state spectroscopy of absorption, circular dichroism (CD) and low temperature fluorescence. The composition and organization of the chlorophylls in monomeric and trimeric LHC II were essentially identical to those of LHC II from higher plants. For LHC II oligomers, a large decrease of chlorophyll (Chl) b absorption and of CD signals corresponding to Chl b was consistent with the quantitative analysis of Chl b by RP-HPLC, indicating that oligomerization of the LHC II proteins significantly influenced spectroscopic properties and led to the dissociation of Chl b molecules from LHC II. Our data strongly suggested that protein oligomerization constitutes a structural basis for the decrease of Chl b molecules in LHC II of B. corticulans. The LHC II of B. corticulans might play a photoprotective role with the reduction of the ability of light absorption via alteration of its own structural conformation.  相似文献   

10.
Most chloroplasts undergo changes in composition, function and structure in response to growth irradiance. However, Tradescantia albiflora, a facultative shade plant, is unable to modulate its light-harvesting components and has the same Chl a/Chl b ratios and number of functional PS II and PS I reaction centres on a Chl basis at all growth irradiances. With increasing growth irradiance, Tradescantia leaves have the same relative amount of chlorophyll—proteins of PS II and PS I, but increased xanthophyll cycle components and more zeaxanthin formation under high light. Despite high-light leaves having enhanced xanthophyll cycle content, all Tradescantia leaves acclimated to varying growth irradiances have similar non-photochemical quenching. These data strongly suggest that not all of the zeaxanthin formed under high light is necessarily non-covalently bound to major and minor light-harvesting proteins of both photosystems, but free zeaxanthin may be associated with LHC II and LHC I or located in the lipid bilayer. Under the unusual circumstances in light-acclimated Tradescantia where the numbers of functional PS II and PS I reaction centres and their antenna size are unaltered during growth under different irradiances, the extents of PS II photoinactivation by high irradiances are comparable. This is due to the extent of PS II photoinactivation being a light dosage effect that depends on the input (photon exposure, antenna size) and output (photosynthetic capacity, non-radiative dissipation) parameters, which in Tradescantia are not greatly varied by changes in growth irradiance.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields. Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b(648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl a/b ratio of approx. 6 and the LD spectrum was positive with a maximum at 690-694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid.  相似文献   

12.
The reversibility of nitrite-induced inhibition in relation to energy distribution between the two photosystems was studied in spinach thylakoid membranes. Measurements of electron transfer rate catalyzed by photosystem I (PS I) and photosystem II (PS II), chlorophyll a (Chl a ) fluorescence induction kinetics, S2 state multiline spectra, and room temperature electron paramagnetic resonance (EPR) signals indicated that nitrite anions bind PS II in two ways: dissociable (loose) and non-dissociable (tight). The inhibition caused by the dissociable binding was reversible in washed (nitrite-treated samples washed with nitrite-free medium) samples, while the inhibition caused by the non-dissociable binding was irreversible. At 77 K, an increase in absorption cross section of PS I (as inferred from the excitation spectra of Chl a fluorescence) and a decrease in absorption cross section of PS II in nitrite-treated sample when compared with sample washed with nitrite-free medium and control sample suggested that nitrite plays a role in regulating the distribution of absorbed excitation energy between the two photosystems. We propose, for the first time, that the removal of loosely bound nitrite leads to migration of light-harvesting complex II back to the PS II, and thus the mode of binding of nitrite regulates the extent of migration of antenna molecules between the two photosystems.  相似文献   

13.
Three distinct states can be identified for cells of the green alga Chlorella vulgaris; State 1 and State 2 obtained by preillumination in far-red and red light, respectively, and the dark state obtained by dark-adaptation. Addition of the inhibitor DCMU to algal cells leads to an initial rapid increase in chlorophyll-a fluorescence reflecting the closure of Photosystem II traps. This, in the case of dark and state-2-adapted algae is followed by a slow light-dependent increase to a fluorescence yield typical of State-1-adapted cells. Measurements of low temperature (77 K) emission spectra indicate that the low fluorescence yields of dark and State-2-adapted algae reflect similar balances in excitation-energy distribution between the two photosystems. In both cases, the balance favours PS I and the slow fluorescence increase seen in the poisoned algae reflects a redressing of this balance in favour of PS II. The low fluorescence yield of State-2-adapted algae is thought to be associated with the phosphorylation of chlorophyll a/b light-harvesting protein (Biochim. Biophys. Acta (1983) 724, 94–103). Measurements of the uncoupler and ATPase sensitivity of the light-dependent increases seen in DCMU-poisoned cells indicate that the low fluorescence yield of dark-adapted algae is of different origin. Evidence is presented showing that the light-driven changes in excitation-energy distribution seen in green algae involve two distinct processes; a low-intensity, wavelenght-independent change reflecting simple light/dark changes and a higher intensity, wavelength-dependent change reflecting State 1/State 2 adaptation. The former changes appear to be associated with changes in the local ionic environment within the algal chloroplast, whilst the latter appear to reflect changes in the phosphorylation state of chlorophyll a/b light-harvesting protein.  相似文献   

14.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

15.
Phycobilisomes (PBS) are the major light-harvesting, protein-pigment complexes in cyanobacteria and red algae. PBS absorb and transfer light energy to photosystem (PS) II as well as PS I, and the distribution of light energy from PBS to the two photosystems is regulated by light conditions through a mechanism known as state transitions. In this study the quantum efficiency of excitation energy transfer from PBS to PS I in the cyanobacterium Synechococcus sp. PCC 7002 was determined, and the results showed that energy transfer from PBS to PS I is extremely efficient. The results further demonstrated that energy transfer from PBS to PS I occurred directly and that efficient energy transfer was dependent upon the allophycocyanin-B alpha subunit, ApcD. In the absence of ApcD, cells were unable to perform state transitions and were trapped in state 1. Action spectra showed that light energy transfer from PBS to PS I was severely impaired in the absence of ApcD. An apcD mutant grew more slowly than the wild type in light preferentially absorbed by phycobiliproteins and was more sensitive to high light intensity. On the other hand, a mutant lacking ApcF, which is required for efficient energy transfer from PBS to PS II, showed greater resistance to high light treatment. Therefore, state transitions in cyanobacteria have two roles: (1) they regulate light energy distribution between the two photosystems; and (2) they help to protect cells from the effects of light energy excess at high light intensities.  相似文献   

16.
In response to excess light, the xanthophyll violaxanthin (V) is deepoxidized to zeaxanthin (Z) via antheraxanthin (A) and the degree of this deepoxidation is strongly correlated with dissipation of excess energy and photoprotection in PS II. However, little is known about the site of V deepoxidation and the localization of Z within the thylakoid membranes. To gain insight into this problem, thylakoids were isolated from cotton leaves and bundle-sheath strands of maize, the pigment protein-complexes separated on Deriphat gels, electroeluted, and the pigments analyzed by HPLC. In cotton thylakoids, 30% of the xanthophyll cycle pigments were associated with the PS I holocomplex, including the PS I light-harvesting complexes and PS I core complex proteins (CC I), and about 50% with the PS II light-harvesting complexes (LHC II). The Chl was evenly distributed between PS I and PS II. Less than 2% of the neoxanthin, about 18% of the lutein, and as much as 76% of the -carotene of the thylakoids were associated with PS I. Exposure of pre-darkened cotton leaves to a high photon flux density for 20 min prior to thylakoid isolation caused about one-half of the V to be converted to Z. The distribution of Z among the pigment-protein complexes was found to be similar to that of V. The distribution of the other carotenoids was unaffected by the light treatment. Similarly, in field-grown maize leaves and in the bundle-sheath strands isolated from them, about 40% of the V present at dawn had been converted to Z at solar noon. Light treatment of isolated bundle-sheath strands which initially contained little Z caused a similar degree of conversion of V to Z. As in cotton thylakoids, about 30% the V+A+Z pool in bundle-sheath thylakoids from maize was associated with the PS I holocomplex and the CC I bands and 46% with the LHC II bands, regardless of the extent of deepoxidation. These results demonstrate that Z is present in PS I as well as in PS II and that deepoxidation evidently takes place within the pigment-protein complexes of both photosystems.Abbreviations A antheraxanthin - CC I, CC II Core or reaction center complex of PS I, PS II - CP Chl protein - EPS epoxidation state - Fm Chl fluorescence at closed PS II reaction centers - IEF isoelectric focussing gels - LHC I, LHC II light-harvesting complex of PS I, PS II - OE oxygen evolving polypeptide - PFD photon flux density - PS I* PS I holocomplex - V violaxanthin - Z zeaxanthin - antibody against C.I.W.-D.P.B. Publication No. 1127.  相似文献   

17.
Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.  相似文献   

18.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

19.
The marine cyanobacterium Prochloron is a unique photosynthetic organism that lives in obligate symbiosis with colonial ascidians. We compared Prochloron harbored in four different host species and cultured Prochlorothrix by means of spectroscopic measurements, including time-resolved fluorescence, to investigate host-induced differences in light-harvesting strategies between the cyanobacteria. The light-harvesting efficiency of photosystems including antenna Pcb, PS II-PS I connection, and pigment status, especially that of PS I Red Chls, were different among the four samples. We also discuss relationships between these observed characteristics and the light conditions, to which Prochloron cells are exposed, influenced by distribution pattern in the host colonies, presence or absence of tunic spicules, and microenvironments within the ascidians' habitat.  相似文献   

20.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号