首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca(2+)](i)). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ~60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca(2+)](i) increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function.  相似文献   

2.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis.  相似文献   

3.
4.
The effects of pharmacological stimulation of skin ion channels TRPA1, TRPM8, TRPV1 on the immune response are presented. These effects are compared with the effects of different types of temperature exposures - skin cooling, deep cooling, and deep heating. This analysis allows us to clear the differences in the influence on the immune response of thermosensitive ion channels localized in the skin; (2) whether the changes in the immune response under temperature exposures are due to these thermosensitive ion channels. Experiments were performed on Wistar rats. For stimulation of TRPM8 ion channel, an application to the skin of 1% menthol was used, for TRPA1 - 0.04% allylisotiocianate, and for TRPV1 - capsaicin in a concentration of 0.001.The antigen binding in the spleen was two-times stimulated by activation of the cold-sensitive ion channel TRPM8 and much weaker by activation of warm-sensitive TRPV1 (by 15%), and another cold-sensitive ion channel TRPA1 (by 40%). Only the stimulation of TRPA1 significantly (by 140%) increased antibody formation in the spleen, while TRPM8 had practically no effect on this process, and activation of TRPV1 significantly (by 60%) inhibited antibody formation. Stimulation of the TRPM8 ion channel significantly (by 60%) reduced the level of IgG in the blood, which is believed to control of infectious diseases.The obtained results show that pharmacological activation of the skin TRPA1, TRPM8, TRPV1 ion channels can differently affect the immune system. At the epicenter of changes there were the antigen binding and antibody formation in the spleen, as well as the level of IgG in the blood. Exactly stimulation of the TRPM8 ion channel determines the changes in the immune response when only the skin is cooling, while at deep body heating, the changes in the immune response are mostly determined by the activation of the skin TRPV1 ion channel.  相似文献   

5.
Lee JY  Yoon JW  Kim CT  Lim ST 《Phytochemistry》2004,65(22):3033-3039
Platycodon grandiflorum A. DC (Campanulaceae) is used as a traditional oriental medicine and also as a food in Korea. Here we investigated its antioxidant activity, and isolated and identified its active compounds. Petroleum ether extracts from the whole root of P. grandiflorum were fractionated by silica gel column chromatography using a solvent gradient (petroleum ether:diethyl ether, v/v; 9:1-5:5). The 8:2 fraction showed a higher radical scavenging activity than the other fractions, and active compounds were purified from this fraction by reversed-phased HPLC. Two active compounds were identified as coniferyl alcohol esters of palmitic and oleic acids by FAB-MS, UV, IR and NMR spectroscopy. The antioxidant activities of these two compounds, which were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide and nitric oxide radical scavenging capacity, were found to be as high as those of BHT or BHA.  相似文献   

6.
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1?/? and TRPV1?/? mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.  相似文献   

7.
Gene amplification is one of the basic mechanisms that lead to overexpression of oncogenes. DNA array comparative genomic hybridization (CGH) has great potential for comprehensive analysis of both a relative gene-copy number and altered chromosomal regions in cancers, which enables us to identify new amplified genes and unstable chromosomal loci. We examined the amplification status in 32 esophageal squamous cell carcinomas (ESCCs) and 13 ESCC cell lines on 51 frequently amplified loci in a variety of cancers by both DNA array CGH and Southern blot analyses. The 1p34 locus containing MYCL1, 2p24 (MYCN), 7p12 (EGFR), and 12q14 (MDM2) were amplified in one of the 32 cases (3%), and the 17q12 locus (ERBB2) and 8p11 (FGFR1) in two of the 32 cases (6%), while only the 11q13 locus (Cyclin D1, FGF4, and EMS1) was frequently amplified (28%, 9/32), demonstrating this locus to be a major target in ESCCs. One locus, 8q24 (c-MYC) was found to be amplified only in the cell lines. Eight out of 51 loci (15.7%) were found to be amplified in at least one of the 32 primary ESCCs or the 13 ESCC cell lines, suggesting that chromosomal loci frequently amplified in a type of human cancer may also be amplified in other types of cancers. This paper is the first report of an application of DNA array CGH to ESCCs.  相似文献   

8.
Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling–mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.  相似文献   

9.
10.
The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.  相似文献   

11.
With-no-lysine (K) kinase 4 (WNK4) is a protein serine/threonine kinase associated with a Mendelian form of hypertension. WNK4 is an integrative regulator of renal transport of Na+, K+, and Cl as shown in Xenopus oocyte system. In addition, WNK4 enhances the surface expression of epithelial Ca2+ channel TRPV5, which plays a key role in the fine tuning of renal Ca2+ reabsorption. Variations in the magnitude of WNK4-mediated regulation on TRPV5 in Xenopus oocytes suggest additional cellular components with limited expression are required for the regulation. In this study, we identified the Na+/H+ exchanger regulating factor 2 (NHERF2) as a critical component for the positive regulation of TRPV5 by WNK4. NHERF2 augmented the positive effect of WNK4 on TRPV5, whereas its homolog NHERF1 had no effect when tested in the Xenopus oocyte system. The C-terminal PDZ binding motif of TRPV5 was required for the regulation by NHERF2. While NHERF2 interacted with TRPV5, no association between NHERF2 and WNK4 was detected using a GST pull-down assay. WNK4 increased the forward trafficking of TRPV5; however, it also caused an accelerated decline of the functional TRPV5 channels at later stage of co-expression. NHERF2 stabilized TRPV5 at the plasma membrane without interrupting the forward trafficking of TRPV5, thus prevented the decline of functional TRPV5 channel caused by WNK4 at later stage. The complementary and orderly regulations of WNK4 and NHERF2 allow TRPV5 functions at higher level for a longer period to maximize Ca2+ influx.  相似文献   

12.
We searched for novel agonists of TRP receptors especially for TRPA1 and TRPV1 in foods. We focused attention on garlic compounds, diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). In TRPA1 or TRPV1 heterogeneously expressed CHO cells, all of those compounds increased [Ca2+]i in concentration-dependent manner. The EC50 values of DADS and DATS were similar to that of allyl isothiocyanate (AITC) and that of DAS was 170-fold larger than that of AITC. Maximum responses of these sulfides were equal to that of AITC. The EC50 values of these compounds for TRPV1 were around 100 μM against that of capsaicin (CAP), 25.6 nM and maximum responses of garlic compounds were half to that of CAP. The Ca2+ responses were significantly suppressed by co-application of antagonist. We conclude that DAS, DADS, and DATS are agonist of both TRPA1 and TRPV1 but with high affinity for TRPA1.  相似文献   

13.
As part of our program directed towards the discovery of new cancer chemopreventive agents from plants, the EtOAc-soluble extract of the stems of M. pomiferus was found to inhibit the enzyme cyclooxygenase-2 (COX-2). Bioassay-directed fractionation of this extract led to the isolation of two dibenzylbutyrolactone lignans, (8R,8'R)-3'-O-demethyl-5-hydroxymatairesinol (1) and (8R,8'R)-3'-O-demethyl-5-methoxymatairesinol (2), as well as seven known compounds, (-)-5'-methoxyyatein (3), blumenol A, (-)-deoxypodophyllotoxin (anthricin), (-)-deoxypodorhizone, 2,6-dimethoxyhydroquinone, 4-hydroxybenzaldehyde, and beta-sitosterol glucoside. The structures of compounds 1 and 2 were determined using spectroscopic data (1D and 2D NMR, and HREIMS), and the 8R and 8'R absolute stereochemistry was established for both 1 and 2 on the basis of their CD spectra. All isolates obtained in the present study were evaluated for their inhibitory effects with both COX-1 and -2. Of these, only 5'-methoxyyatein (3) showed weak activity against COX-2, while all other compounds isolated were inactive. The COX-2 inhibitory activity of the EtOAc extract was also traced to the presence of several common fatty acids by LC-MS.  相似文献   

14.
The hydrodistillation products of the liverworts Marsupella emarginata, M. aquatica and M. alpina were investigated by spectroscopic methods. A number of new compounds could be isolated by preparative gas chromatography (GC) and identified by spectroscopic techniques including GC-mass spectrometry, NMR and chemical correlations in conjunction with enantioselective GC. From M. emarginata, in addition to many known compounds, the sesquiterpene hydrocarbon (-)-7-epi-eremophila-1(10),8,11-triene (1) and the sesquiterpene derivatives (-)-4-epi-marsupellol (2), (-)-marsupellol acetate (18), (-)-4-epi-marsupellol acetate (4), (+)-5-hydroxymarsupellol acetate (5) and (-)-9-acetoxygymnomitr-8(12)-ene (24) could be identified. In M. aquatica the sesquiterpene hydrocarbons (-)-myltayl-8(12)-ene (7), ent-(+)-amorpha-4,11-diene (8), (-)-amorpha-4,7(11)-diene (9), the sesquiterpene alcohol (+)-9-hydroxyselina-4,11-diene (10) and (-)-2-acetoxyamorpha-4,7(11)-diene (11) were identified. In M. alpina (-)-trans-selina-4(15),11-dien-5-ol (12), (+)-8,9-epoxyselina-4,11-diene (13) and (+)-cis-selina-4(15),11-dien-5-ol (14) were found as new natural products.  相似文献   

15.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.  相似文献   

16.
17.
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a transmembrane protein that can be activated by various physical and chemical stimuli and is associated with pain transduction. In recent years, TRPV1 was discovered to play essential roles in cancer tumorigenesis and development, as TRPV1 expression levels are altered in numerous cancer cell types. Several investigations have discovered direct associations between TRPV1 and cancer cell proliferation, cell death, and metastasis. Furthermore, about two dozen TRPV1 agonists/antagonists are under clinical trial, as TRPV1 is a potential drug target for treating various diseases. Hence, more researchers are focusing on the effects of TRPV1 agonists or antagonists on cancer tumorigenesis and development. However, both agonists and antagonists may reveal anti-cancer effects, and the effect may function via or be independent of TRPV1. In this review, we provide an overview of the impact of TRPV1 on cancer cell proliferation, cell death, and metastasis, as well as on cancer therapy and the tumor microenvironment, and consider the implications of using TRPV1 agonists and antagonists for future research and potential therapeutic approaches.  相似文献   

18.
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1.  相似文献   

19.
Phenolic extractives in Salix caprea wood and knots   总被引:1,自引:0,他引:1  
Salix caprea stemwood and knots were found to contain the phenolic extractives vanillic acid, 3-p-coumaryl alcohol, coniferyl alcohol, sinapylaldehyde, dihydrokaempferol, catechin, naringenin, gallocatechin, dihydromyrcetin and taxifolin. The knots contained larger quantities of flavonoids than did stemwood of the same tree.  相似文献   

20.
Second and third instar Chilo partellus larvae were infected with Beauveria bassiana and Metarhizium anisopliae (both at 1x10(8)conidia/ml) and daily consumption of maize leaves was measured. Infection by the fungi was associated with reduced mean daily food consumption. Reduction in food consumption became evident 3-4 days after treatment with the fungi for second instar larvae and 4-5 days for third instar larvae. Four conidial concentrations, 1x10(5), 1x10(6), 1x10(7), and 1x10(8)conidia/ml, were tested against second instar larvae. Food consumption dropped by 70-85% when the second instar larvae were treated with the fungi at 1x10(8)conidia/ml. Reduction in food consumption by C. partellus larvae infected with B. bassiana and M. anisopliae may offset the slow speed of kill of the fungi. The effect of artificial versus natural diets on mortality and mycoses of second instar larvae treated with the fungi at 1x10(8)conidia/ml was determined. Larvae provided with artificial diet suffered little mortality and mycoses than larvae provided with maize leaves. The LT(50) was longer for larvae provided with artificial diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号