首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The copy number of a plasmid, pUC-based vector, was previously shown to be affected by culture temperature. In this study, intracellular hirudin variant 1 (f-HV1) fused to porcine adenylate kinase protein was produced using recombinant Escherichia coli by temperature shift cultivation coupled with a high cell density cultivation technique for E. coli JM109. The optimal temperature for cellular growth suppressing f-HV1 production was 33 degrees C, resulting in a final dried cell concentration of 45.7 g/l, with a specific growth rate of 0.54 1/h. Optimizing the temperature-shift conditions (temperature shifted to an OD660 nm of 15 from 33 degrees C to 37 degrees C) resulted in the production of f-HV1 up to 4763 mg/l as an inclusion body with dried cell concentration of 44 g/l in 18 h.  相似文献   

2.
产1,3-丙二醇新型重组大肠杆菌的构建   总被引:8,自引:1,他引:8  
利用PCR技术从大肠杆菌(Escherichia coli )中扩增出1.16 kb的编码1,3-丙二醇氧化还原酶同工酶的基因yqhD,将其连接到表达载体pEtac,得到重组载体pEtac-yqhD,重组载体在大肠杆菌JM109中得到高效表达。SDS_PAGE分析显示融合表达产物的分子量均为43 kD,同核酸序列测定所推导的值相符。对含有yqh-D的基因工程菌进行表达研究表明:37 ℃,以1.0 mmol /L IPTG诱导4 h,1,3-丙二醇氧化还原酶同工酶的酶活力达到120 u/mg蛋白,而对照菌株的酶活力为0.5 u/mg蛋白。再将含甘油脱水酶基因dhaB和含1,3-丙二醇氧化还原酶同工酶基因yqhD的重组质粒共转化大肠杆菌JM109得到重组大肠杆菌JM109(pUCtac-dhaB, pEtac-yqhD),该菌株在好氧条件下,以1.0mmol/L IPTG诱导可将50 g/L甘油转化为38.0 g/L 1,3-丙二醇。首次发现1,3-丙二醇氧化还原酶同工酶在好氧条件下表现出较高的活性。  相似文献   

3.
重组大肠杆菌高密度培养研究进展   总被引:1,自引:0,他引:1  
重组大肠杆菌细胞高密度培养(High cell-density cultivation,HCDC)是获得高外源蛋白产率的一种重要策略,影响重组大肠杆菌高密度培养的因素主要有以下几个方面:重组体的构建及其稳定性,培养基成分,培养方式,培养条件及培养过程中抑制性代谢产物的积累等。从以上几个方面对近期的研究进展进行了综述。  相似文献   

4.
Culture conditions with Pseudomonas putida strain HKT554, expressing naphthalene dioxygenase, known as the biocatalyst showing wide substrate specificity, were optimized for high cell density cultivation (HCDC). Culture in a medium TK-B modified from that for HCDC of Escherichia coli with glucose fed-batch and dissolved oxygen stat resulted in a high cell density growth of 114 g dry cell/l at 40 h of cultivation. This system was further applied for S-(+)-methyl phenyl sulfoxide (MPSO) production from methyl phenyl sulfide. Addition of nonpolar organic solvent, such as n-hexadecane, greatly enhanced the MPSO production due to the prevention of substrate evaporation, resulting in a MPSO production up to 39 mM in 30 h with a conversion rate of 95.7 mol%.  相似文献   

5.
A gene encoding the carboxymethylcellulase (CMCase) of a marine bacterium, Bacillus subtilis subsp. subtilis A-53, was cloned in Escherichia coli JMB109 and the recombinant strain was named as E. coli JMB109/A-53. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth, extracted by Design Expert Software based on response surface methodology, were 100.0 g/l, 7.5 g/l, and 7.0, respectively, whereas those for production of CMCase were 100.0 g/l, 7.5 g/l, and 8.0. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/A-53 were found to be and 40 and 35 °C, respectively. The optimal agitation speed and aeration rate of a 7 l bioreactor for cell growth were 400 rpm and 1.5 vvm, whereas those for production of CMCase were 400 rpm and 0.5 vvm. The optimal inner pressure for cell growth was 0.06 MPa, which was the same as that for production of CMCase. The production of CMCase by E. coli JM109/A-53 under optimized conditions was 880.2 U/ml, which was 2.9 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen source for production of CMCase by a recombinant E. coli JM109/A-53 and the productivity of E. coli JM109/A-53 was 5.9 times higher than that of B. subtilis subp. subtilis A-53.  相似文献   

6.
A high cell density cultivation (HCDC) for growth of Escherichia coli in an especially designed glucose/mineral salt medium is proposed. The HCDC essentially starts as a batch process which is followed by a two-phase fed-batch cultivation. After unlimited growth at mu max = 0.45 h-1 in the batch part, growth was controlled at a reduced specific growth rate (mu = 0.11 h-1 less than mu max) over a period of 3 doubling times in which the biomass concentration increased from 12 to 95 g 1(-1) (phase 1 of fed-batch cultivation). Control of growth (mu) was realized by a PO2 control loop (by variation of glucose feeding) and a mu control loop (by variation of agitation speed N) while the actual mu was calculated from the off-gas composition. If the agitation rate cannot be increased anymore the mu controller is switched off (end of phase 1). In the following phase 2, mu declines, however, the still acting pO2 (glucose) controller guarantees sufficient O2 supply till the end of the cultivation with a biomass concentration of 110 g 1(-1) (dry mass). The proposed HCDC suppresses generation of inhibitory by-products and the high yield coefficients indicate the economy of the process.  相似文献   

7.
Production of a mutant of the enzyme a-lytic protease from recombinant E. coli JM109 increased from 50 units/l to 750 units/l as the dissolved oxygen was decreased from above 30% saturation to near zero during batch growth on a complex medium. This represents a 60-fold increase in specific protease production (units/g cell dry wt.). Limiting the oxygen supply decreased the maximum growth rate from 0.55 h -1 to 0.066 h -1 which may in turn regulate the synthesis of recombinant protease in this system so that increased levels of product are obtained.  相似文献   

8.
Recombinant Escherichia coli JM101 strains harbouring plasmids pWKW2 or lacUV5par8EGF, both encoding human epidermal growth factor (hEGF), were used in fermentations to optimize levels of excreted hEGF. Medium composition, inducer level, growth stage at induction and culture conditions, were optimized with respect to volumetric production of the recombinant protein. MMBL medium, with glucose at 5 g/l and tryptone as nitrogen source, was chosen. Isopropyl-β- -thiogalactopyranoside(IPTG) concentrations of 0.1 mM for E. coli JM101[pWKW2] and 0.2 mM for E. coli K-12 JM101[lacUV5par8EGF], were found to give the best hEGF production levels. The volumetric yields of hEGF were maximal when the cultures were induced in the mid-logarithmic phase. Growth temperature had a significant effect on hEGF yield. A simple continuous fed-batch process for cultivation of E. coli JM101[pWKW2] was developed. The maximum concentration of excreted hEGF attained in continuous fed-batch cultivation was 325 mg/l, as compared to 175 mg/l, in batch cultivation. The hEGF produced from the continuous fed-batch cultivation was substantiated by SDS-PAGE and immunoblotting.  相似文献   

9.
Physiological effects of isopropyl-thiogalactopyranoside (IPTG) induction were examined in Escherichia coli strain JM109 expressing a fusion protein composed of transforming growth factor alpha and a 40-kD portion of Pseudomonas aeruginosa exotoxin A (TGF(alpha)-PE40) under control of the tac promoter. Fermentations at the 15-L scale in complex medium compared growth and metabolite profiles of the untransformed JM109 host strain, the strain transformed with the vector lacking the TGF(alpha)-PE40 open reading frame (JM109[pKK2.7]), and the strain with the complete plasmid for TGF(alpha)-PE40 expression (JM109[pTAC-TGF57-PE40]). Metabolite and growth profiles of JM109 (pTAC-TGF57-PE40) cultures changed significantly in IPTG-induced versus uninduced cultures. Prior to induction, glucose was metabolized to acetate or completely oxidized to CO(2). Following induction, pyruvate was also excreted in addition to acetate. In the absence of inducer, pyruvate was excreted by JM109 (pTAC-TGF57-PE40) only when dissolved oxygen levels fell to less than 10% of saturation (microaerobic rather than anaerobic conditions). The untransformed JM109 host strain or JM109 (pKK2.7) did not excrete pyruvate in the presence or absence of inducer, although JM109 (pKK2.7) exhibited a pattern of growth following addition of IPTG that closely resembled JM109 (pTAC-TFG57-PE40). Fermentations of JM109 (pTAC-TFG57-PE40) in a synthetic medium supported lower expression levels, but resulted in similar alterations in metabolite profiles. Induction in synthetic medium resulted in pyruvate excretion without further acetate accumulation. Taken together, these data suggest that one consequence of TGF(alpha)-PE40 expression in JM109 is altered patterns of pyruvate oxidation. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
用于质粒DNA规模化生产的大肠杆菌发酵培养基的筛选   总被引:2,自引:0,他引:2  
为降低质粒DNA的生产成本,在标准LB培养基的基础上,利用国产试剂配制成十种大肠杆菌液体培养基,以pEGFPC3、pcDNAlacZ和pcDNKLYZ质粒转化的JM109和DH5α大肠杆菌为指示菌进行小规模发酵培养,定时采样测量OD600值及质粒产量,获得一种高性价比培养基。用该培养基培养重组大肠肝菌,绘制生长曲线,并于其对数生长中期进行42℃诱导。结果表明经42℃诱导后,重组大肠肝菌JM109和DH5α的质粒产量均有提高,重组JM109的产量比重组DH5α约提高20%,为低成本、大规模生产重组质粒提供了良好的技术保障。  相似文献   

11.
利用Red重组系统构建了大肠杆菌JM109甘油激酶基因(glpK)和甘油脱氢酶基因(gldA)缺失的双突变菌株JM109B,然后将表达酿酒酵母3-磷酸甘油脱氢酶基因(GPD1)和3-磷酸甘油酯酶基因(HOR2)的质粒pSE-gpd1-hor2转化到JM109B突变菌株中,在含1%葡萄糖的摇瓶发酵培养基中37℃发酵24 h,甘油的最高产量为5.61 g/L,是原始菌株JM109/pSE-gpd1-hor2甘油产量的1.59倍;在30 L发酵罐中发酵28 h,甘油的最高产量为103.12 g/L,是原始菌株JM109/pSE-gpd1-hor2甘油产量的1.59倍,是原始菌株BL21/pSE-gpd1-hor2甘油产量的1.41倍,葡萄糖转化率为50.39%。  相似文献   

12.
13.
14.
Two Escherichia coli strains, widely used for the production of various recombinant proteins, were compared for their pre-induction growth and acetate accumulation patterns. The strains studied were E. coli BL21 (lambdaDE3), transformed with a plasmid encoding Pseudomonas exotoxin A, and an E. coli K12 derived strain, JM109, carrying a plasmid encoding maltose-binding protein fused with HIV protease. Cultures were grown in controlled bench-top fermentors to the optimal pre-induction density in both high glucose batch and low glucose fed batch strategies. The results showed the superiority of E. coli BL21 (lambdaDE3) as a host for a recombinant protein expression system. For example, JM109 responds differently to high glucose concentration and to low glucose concentration. Its acetate concentration was as high as 10 g/L in a batch mode and 5 g/L in a fed batch mode. In comparison, strain BL21 (lambdaDE3) reached 2 g/L acetate when grown in batch mode and not more than 1 g/L acetate when grown in a fed batch mode. E. coli BL21 (lambdaDE3), most likely, possesses an acetate self-control mechanism which makes it possible to grow to the desired pre-induction density in a high glucose medium using simple batch propagation techniques. Such a technique is cost effective, reproducible, and easy to scale up. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
酿酒酵母乙醛脱氢酶的克隆与表达   总被引:1,自引:0,他引:1  
利用PCR技术从酿酒酵母(Saccharomyces cerevisiae W303-1A)总DNA中扩增得到1.9kb乙醛脱氢酶编码基因aldh,将其连接到表达载体pEtac,得到重组载体pEtac—aldh,重组载体在大肠杆菌JM109中得到高效表达。对含有aldh的基因工程菌进行表达研究表明:该菌株在37℃下,以1.0mmol/LIPTG诱导5h酶活力达到22.8U,比酶活力为15.0U/mg蛋白,而对照菌株检测不到酶活力,并且该菌的耐乙醛浓度可达3.2g/L。  相似文献   

16.
The productivity of Escherichia coli as a producer of recombinant proteins is affected by its metabolic properties, especially by acetate production. Two commercially used E. coli strains, BL21 (lambdaDE3) and JM109, differ significantly in their acetate production during batch fermentation at high initial glucose concentrations. E. coli BL21 grows to an optical density (OD, 600 nm) of 100 and produces no more than 2 g/L acetate, while E. coli JM109 grows to an OD (600 nm) of 80 and produces up to 14 g/L acetate. Even in fed-batch fermentation, when glucose concentration is maintained between 0.5 and 1.0 g/L, JM109 accumulates 4 times more acetate than BL21. To investigate the difference between the two strains, metabolites and enzymes involved in carbon utilization and acetate production were analyzed (isocitrate, ATP, phosphoenolpyruvate, pyruvate, isocitrate lyase, and isocitrate dehydrogenase). The results showed that during batch fermentation isocitrate lyase activity and isocitrate concentration were higher in BL21 than in JM109, while pyruvate concentration was higher in JM109. The activation of the glyoxylate shunt pathway at high glucose concentrations is suggested as a possible explanation for the lower acetate accumulation in E. coli BL21. Metabolic flux analysis of the batch cultures supports the activity of the glyoxylate shunt in E. coli BL21.  相似文献   

17.
Xia XX  Han MJ  Lee SY  Yoo JS 《Proteomics》2008,8(10):2089-2103
Escherichia coli BL21 (DE3) and W3110 strains, belonging to the family B and K-12, respectively, have been most widely employed for recombinant protein production. During the excretory production of recombinant proteins by high cell density cultivation (HCDC) of these strains, other native E. coli proteins were also released. Thus, we analyzed the extracellular proteomes of E. coli BL21 (DE3) and W3110 during HCDC. E. coli BL21 (DE3) released more than twice the amount of protein compared with W3110 during HCDC. A total of 204 protein spots including 83 nonredundant proteins were unambiguously identified by 2-DE and MS. Of these, 32 proteins were conserved in the two strains, while 20 and 33 strain-specific proteins were identified for E. coli BL21 (DE3) and W3110, respectively. More than 70% of identified proteins were found to be of periplasmic origin. The outer membrane proteins, OmpA and OmpF, were most abundant. Two strains showed much different patterns in their released proteins. Also, cell density-dependent variations in the released proteins were observed in both strains. These findings summarized as reference proteome maps will be useful for studying protein release in further detail, and provide new strategies for enhanced excretory production of recombinant proteins.  相似文献   

18.
AIMS: The aim was to develop reliable and economical protocols for the production of fully deuteriated biomolecules by bacteria. This required the preparation of deuterium-tolerant bacterial strains and an understanding of the physiological mechanisms of acquisition of deuterium tolerance. METHODS AND RESULTS: We report here improved methods for the cultivation of Escherichia coli on fully deuteriated minimal medium. A multi-stage adaptation protocol was developed; this included repeated plating and selection of colonies and resulted in highly deuterium-tolerant cell cultures. Three E. coli strains, JM109, MRE600 and MRE600Rif, were adapted to growth on deuteriated succinate medium. This is the first report of JM109 being adapted to deuteriated minimal media. The adapted strains showed good, consistent growth rates and were capable of being transformed with plasmids. Expression of heterologous proteins in these strains was reliable and yields were consistently high (100-200 mg l-1). We also show that all E. coli cells are inherently capable of growth on deuteriated media. CONCLUSIONS: We have developed a new adaptation protocol that resulted in three highly deuterium-tolerant E. coli strains. Deuterium-adapted cultures produced good yields of a deuteriated recombinant protein. We suggest that E. coli cells are inherently capable of growth on deuteriated media, but that non-specific mutations enhance deuterium tolerance. Thus plating and selection of colonies leads to highly deuterium-tolerant strains. SIGNIFICANCE AND IMPACT OF STUDY: An understanding of the mechanism of adaptation of E. coli to growth on deuteriated media allows strategies for the development of disabled deuterium-tolerant strains suitable for high-level production of deuteriated recombinant proteins and other biomolecules. This is of particular importance for nuclear magnetic resonance and neutron scattering studies of biomolecules.  相似文献   

19.
Almost all bacteria possess glutamate racemase to synthesize d-glutamate as an essential component of peptidoglycans in the cell walls. The enforced production of glutamate racemase, however, resulted in suppression of cell proliferation. In the Escherichia coli JM109/pGR3 clone, the overproducer of glutamate racemase, the copy number (i.e. replication efficiency) of plasmid DNA declined dramatically, whereas the E. coli WM335 mutant that is defective in the gene of glutamate racemase showed little genetic competency. The comparatively low and high activities for DNA supercoiling were contained in the E. coli JM109/pGR3 and WM335 cells, respectively. Furthermore, we found that the DNA gyrase of E. coli was modulated by the glutamate racemase of E. coli in the presence of UDP-N-acetylmuramyl-l-alanine, which is a peptidoglycan precursor and functions as an absolute activator for the racemase. This is the first finding of the enzyme protein participating in both d-amino acid metabolism and DNA processing.  相似文献   

20.
Escherichia coli JM109(DE3) harboring expression plasmid pkAQNÆC30, which carries the Thermus protease aqualysin I (AQI) gene, was cultivated with glucose as a sole carbon source. The final cell concentration was over 15 g dry weight/l and the amount of AQI produced reached approximately 130 kU/ml broth. Moreover, by using two carbon sources, glucose and glycerol, the production yield was increased to over 200 kU AQI/ml, while suppressing the formation of inhibitory acetic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号