首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide binding subunit of the phosphate-specific transporter (PstB) from Mycobacterium tuberculosis is a member of the ABC family of permeases, which provides energy for transport through ATP hydrolysis. We utilized the intrinsic fluorescence of the single tryptophan containing protein to study the structural and conformational changes that occur upon nucleotide binding. ATP binding appeared to lead to a conformation in which the tryptophan residue had a higher degree of solvent exposure and fluorescence quenching. Substantial alteration in the proteolysis profile of PstB owing to nucleotide binding was used to decipher conformational change in the protein. In limited proteolysis experiments, we found that ATP or its nonhydrolyzable analog provided significant protection of the native protein, indicating that the effect of nucleotide on PstB conformation is directly associated with nucleotide binding. Taken together, these results indicate that nucleotide binding to PstB is accompanied by a global conformational change of the protein, which involves the helical domain from Arg137 to Trp150. Results reported here provide evidence that the putative movement of the alpha-helical sub-domain relative to the core sub-domain, until now only inferred from X-ray structures and modeling, is indeed a physiological phenomenon and is nucleotide dependent.  相似文献   

2.
The B-subunit of phosphate-specific transporter (PstB) is an ABC protein. pstB was polymerase chain reaction-amplified from Mycobacterium tuberculosis and overexpressed in Escherichia coli. The overexpressed protein was found to be in inclusion bodies. The protein was solubilized using 1.5% N-lauroylsarcosine and was purified by gel permeation chromatography. The molecular mass of the protein was approximately 31 kDa. The eluted protein showed ATP-binding ability and exhibited ATPase activity. Among different nucleotide triphosphates, ATP was found to be the preferred substrate for M. tuberculosis PstB-ATPase. The study of the kinetics of ATP hydrolysis yielded K(m) of approximately 72 microm and V(max) of approximately 0.12 micromol/min/mg of protein. Divalent cation like manganese was inhibitory to the ATPase activity. Magnesium or calcium, on the other hand, had no influence on the functionality of the enzyme. The classical ATPase inhibitors like sodium azide, sodium vanadate, and N-ethylmaleimide were without any effect but an ATP analogue, 5'-p-fluorosulfonylbenzoyl adenosine, inhibited the ATPase function of the recombinant protein with a K(i) of approximately 0.40 mm. Furthermore, there was hardly any ATP hydrolyzing ability of the PstB as a result of mutation of the conserved aspartic acid residue to lysine in the Walker motif B, confirming the recombinant protein is an ATPase. Interestingly, analysis of the recombinant PstB revealed that it is a thermostable ATPase; thus, our results highlight for the first time the presence of such an enzyme in any mesophilic bacteria.  相似文献   

3.
The nucleotide-binding subunit of phosphate-specific transporter (PstB) from mesophilic bacterium, Mycobacterium tuberculosis, is a unique ATP-binding cassette (ABC) ATPase because of its unusual ability to hydrolyze ATP at high temperature. In an attempt to define the basis of thermostability, we took a theoretical approach and compared amino acid composition of this protein to that of other PstBs from available bacterial genomes. Interestingly, based on the content of polar amino acids, this protein clustered with the thermophiles.  相似文献   

4.
Molecular aspects of phosphate transport in Escherichia coli   总被引:14,自引:0,他引:14  
Escherichia coli transports inorganic phosphate (Pi) by the low-affinity transport system, Pit. When the level of the external Pi is lower than 20 microM, another transport system, Pst, is induced with a Kt of 0.25 microM. An outer-membrane porin, PhoE, with a Km of about 1 microM is also induced. The outer membrane allows the intake of organic phosphates which are degraded to Pi by phosphatases in the periplasm. The Pi-binding protein will capture the free Pi produced in the periplasm and direct it to the transmembrane channel of the cytoplasmic membrane. The channel consists of two proteins, PstA and PstC, which have six and five transmembrane helices, respectively. On the cytoplasmic side of the membrane the channel is linked to the PstB protein, which carries a nucleotide (probably ATP)-binding site. PstB probably provides the energy required by the channel to free Pi. The Pst system has two functions in E. coli: (i) the transport of Pi, and (ii) the negative regulation of the phosphate regulon (a complex of 20 proteins mostly related to organic phosphate transport). It is remarkable that these two functions are not related, since the repressibility of the regulon depends on the integral structure of Pst (PiBP + PstA + PstC + PstB) and not on the Pi transported. Another gene of the pst operon, phoU, produces a protein involved in the negative regulation of the Pho regulon, but the mechanism of this function has not been explained. Thus the regulatory function of the Pst system remains obscure. Its basal level, present when Pi is abundant, is sufficient to repress the Pho regulon but the negative regulatory function is lost upon Pi starvation.  相似文献   

5.
Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer.  相似文献   

6.
张鹏  王龙  谢明杰 《微生物学报》2019,59(8):1429-1436
无机磷酸盐(Pi)在菌体遗传、能量代谢及细胞内的信号传导等生物过程中发挥重要的作用。在细菌中,主要由磷酸盐特殊转运系统(Pst)和磷酸盐转运系统(Pit)来完成对Pi的吸收和利用。其中,Pst是在低磷胁迫下转运Pi的关键系统。近年来的研究表明,Pst系统除在调控Pi的代谢和平衡中发挥重要作用外,还介导细菌耐药、产毒和侵袭等。Pst系统是ABC转运蛋白家族的一种,一般由PstS、PstC、PstA、PstB和PhoU5个蛋白组成。其中,PstS和PstB蛋白是该系统中的关键蛋白。本文重点对PstS和PstB调控Pi转运和介导细菌耐药的分子机制进行综述,旨在为深入研究该系统与细菌耐药的关系,以及研发以PstS和PstB为靶点的新药提供参考。  相似文献   

7.
In Saccharomyces cerevisiae, expression of functional F1-ATPase requires two proteins encoded by the ATP11 and ATP12 genes. Mutations in either gene block some crucial late step in assembly of F1, causing the alpha and beta subunits to accumulate in mitochondria as inactive aggregates (Ackerman, S. H., and Tzagoloff, A. (1991) Proc. Natl. Acad. Sci. U.S.A. 87, 4986-4990). In the present study we have cloned and determined the sequence of ATP11. The encoded product is protein of 37 kDa with no obvious homology to any known protein. In vitro import assays of ATP11 precursor and immunochemical evidence indicate that the protein is located in mitochondria. A fusion was made between ATP11 and a short sequence coding for 78 amino acids with the biotination signal of bacterial transcarboxylase. The protein expressed from this construct complements atp11 mutants, indicating that the addition of the extra 78 amino acids at the carboxyl terminus of the ATP11 protein does not compromise its function. The hybrid protein is detected in mitochondria with antibodies and with peroxidase-conjugated avidin. Biotinated ATP11 protein can be partially purified by affinity chromatography on monomeric or tetrameric avidin coupled to Sepharose. A fraction eluted from the avidin column and enriched for the biotinated ATP11 protein also contains the alpha and beta subunits of F1-ATPase.  相似文献   

8.
孙明珠  潘珊珊  王迪  宫正  谢明杰 《微生物学报》2020,60(11):2582-2592
[目的] 研究染料木素对耐甲氧西林金黄色葡萄球菌(MRSA)外排蛋白的影响。[方法] 通过联合药敏实验检测染料木素影响MRSA对环丙沙星的敏感性;利用等重同位素多标签相对定量蛋白质组学(iTRAQ)技术,检测染料木素作用MRSA41577后菌体蛋白表达量的变化;通过生物信息学方法对差异显著的蛋白进行系统分析;通过qPCR和尼罗红外排实验,探讨耐药相关的蛋白介导细菌耐药的作用机制。[结果] 联合药敏实验结果显示,染料木素能增强MRSA对环丙沙星的敏感性;通过iTRAQ技术检测到差异显著蛋白共有129个,包括60个表达上调的蛋白和69个表达下调的蛋白;生物信息学分析结果显示,与细菌耐药相关的蛋白约有14个,其中,通过主动外排系统介导细菌耐药的蛋白主要有PstB、PstS等;qPCR结果显示,与对照组相比,PstB、PstS的基因表达量分别下降了51.6%和78.6%;尼罗红外排实验结果显示,染料木素与尼罗红之间存在竞争关系,为MRSA41577的竞争性抑制剂。[结论] 染料木素可通过降低MRSA41577外排基因pstBpstS的mRNA表达量,进而影响PstB、PstS外排蛋白的表达来逆转细菌耐药;此外,染料木素还是MRSA41577的竞争性外排抑制剂,可通过与底物竞争外排的方式,使抗菌药物留在菌体内发挥抗菌作用。  相似文献   

9.
【目的】家蚕微孢子虫Nosema bombycis ADP/ATP转运蛋白可能参与搬运宿主细胞的能量。本研究克隆家蚕微孢子虫ADP/ATP转运蛋白基因,并进行原核表达、抗体制备及间接免疫荧光定位,为控制和防治家蚕微粒子病提供理论基础。【方法】通过同源序列比对鉴定家蚕微孢子虫N. bombycis ADP/ATP转运蛋白序列,采用生物合成的方法将编码3段面向膜内侧肽段的核酸序列拼接合成,在其两端引入BglⅡ和SalⅠ酶切位点,克隆至pUC57载体并测序,再亚克隆至含有二氢叶酸还原酶(dihydrofolate reductase,DHFR)标签的表达载体pQE40中,然后利用BamHⅠ和SalⅠ酶切获得含有DHFR标签的重组序列,并连接至pET30a(+)载体中进行诱导表达。通过SDS-PAGE、镍柱亲和层析和免疫印迹法鉴定表达蛋白,利用间接免疫荧光对ADP/ATP转运蛋白的分布进行检测。【结果】家蚕微孢子虫的ADP/ATP转运蛋白编码序列(GenBank登录号为EOB13854.1)全长1 524 bp,编码蛋白含有507个氨基酸残基,预测分子质量为59 kDa,等电点为9.35。具有12个跨膜结构域和TLC结构域,其中TLC结构域含有4个功能保守位点。与蜜蜂微孢子虫的ADP/ATP转运蛋白比较,氨基酸序列一致性达30%。系统进化分析表明微孢子虫ADP/ATP转运蛋白聚为一类,具有共同的起源。成功构建了NbADP/ATP-△TM-DHFR-pET30a原核表达重组质粒,目的基因获得表达,其融合蛋白分子量约为37 kDa,纯化重组蛋白并制备了多克隆抗体。免疫印迹分析表明,成熟微孢子虫中表达ADP/ATP转运蛋白;间接免疫荧光定位结果显示,家蚕微孢子虫孢子ADP/ATP转运蛋白定位于孢子质膜上。【结论】本研究将为阻断微孢子虫能量来源,达到控制和防治家蚕微粒子病提供新的思路。  相似文献   

10.
The ars operon of the conjugative R-factor R773 confers resistance to arsenicals by coding for an anion pump for extrusion of arsenicals from cells of Escherichia coli. The operon encodes three structural genes arsA, arsB, and arsC. The anion pump requires only two polypeptides, the ArsA and ArsB proteins. Purified ArsA protein exhibits oxyanion-stimulated ATPase activity and was demonstrated to bind ATP by photoaffinity labeling with [alpha-32P]ATP. Analysis of the amino acid sequence deduced from the nucleotide sequence of the arsA gene suggests that the ArsA protein contains two potential nucleotide binding folds, one in the N-terminal half and one in the C-terminal half of the protein. A combination of site-directed and bisulfite mutagenesis was used to alter the glycine-rich region of the N-terminal putative nucleotide-binding sequence G15KGGVGKTS23. Four mutant proteins (G18----D, G18----R, G20----S, and T22----I) were analyzed. Strains bearing the mutated plasmids were all arsenite sensitive and were unable to extrude arsenite. Each purified mutant protein lacked oxyanion-stimulated ATPase activity and ATP binding. These results suggest that the N-terminal sequence is part of a nucleotide-binding domain required for catalysis.  相似文献   

11.
The ars operon of the conjugative R-factor R773 confers resistance to arsenicals by coding for an anion pump for extrusion of arsenicals from cells of Escherichia coli. Extrusion of arsenite requires only two polypeptides, the ArsA and ArsB proteins. Purified ArsA protein exhibits oxyanion-stimulated ATPase activity and has been shown to bind ATP by photoaffinity labeling with [alpha-32P]ATP. From sequence analysis the ArsA protein is predicted to have two nucleotide binding folds, one in the N-terminal half and one in the C-terminal half of the protein. Purified ArsA protein bound a fluorescent ATP analogue, 2',3'-O-(2,4,6-trinitrophenylcyclohexadienylidene)adenosine- 5'-triphosphate, with an apparent stoichiometry of 2 mol of nucleotide per mole of ArsA. Strains expressing plasmids with mutations in the N-terminal consensus nucleotide sequence bound only 1 mol of nucleotide per mole of protein.  相似文献   

12.
Herein, we report the cloning and molecular characterization of a full cDNA encoding a putative plastidic ATP/ADP transporter, designated HtAATP, for Helianthus tuberosus L. The ATP/ADP translocator protein was isolated from the tuber-cDNA library of H. tuberosus for the first time. The predicted HtAATP protein was judged as a plastidic ATP/ADP translocator protein from its high homology at the amino acid sequence level to the two Arabidopsis thaliana plastidic ATP/ADP translocator proteins AATP1 and AATP2 (84.8% and 79.9% identity, respectively). Amino acid sequence analysis of the primary structure of HtAATP revealed that it belonged to the plastidic ATP/ADP transporter family. Hydropathy prediction indicated that HtAATP gene product is a highly hydrophobic membrane protein that contains 10 transmembrane domains to form a spanning topology. Southern blotting analysis showed that the HtAATP gene is a single-copy gene in the H. tuberosus genome. Tissue distribution analysis showed that the HtAATP gene is prominently expressed in sink tissues. A stable expression pattern in tubers at different developmental stages implies an active involvement of HtAATP during carbohydrate formation.  相似文献   

13.
The Candida drug resistance protein Cdr1p (approximately 170 kDa) is a member of ATP binding cassette (ABC) superfamily of drug transporters, characterized by the presence of 2 nucleotide binding domains (NBD) and 12 transmembrane segments (TMS). NBDs of these transporters are the hub of ATP hydrolysis activity, and their sequence contains a conserved Walker A motif (GxxGxGKS/T). Mutations of the lysine residue within this motif abrogate the ability of NBDs to hydrolyze ATP. Interestingly, the sequence alignments of Cdr1p NBDs with other bacterial and eukaryotic transporters reveal that its N-terminal NBD contains an unusual Walker A sequence (GRPGAGCST), as the invariant lysine is replaced by a cysteine. In an attempt to understand the significance of this uncommon positioning of cysteine within the Walker A motif, we for the first time have purified and characterized the N-terminal NBD (encompassing first N-terminal 512 amino acids) of Cdr1p as well as its C193A mutant protein. The purified NBD-512 protein could exist as an independent functional general ribonucleoside triphosphatase with strong divalent cation dependence. It exhibited ATPase activity with an apparent K(m) in the 0.8-1.0 mM range and V(max) in the range of 147-160 nmol min(-)(1) (mg of protein)(-)(1). NBD-512-associated ATPase activity was also sensitive to inhibitors such as vanadate, azide, and NEM. The Mut-NBD-512 protein (C193A) showed a severe impairment in its ability to hydrolyze ATP (95%); however, no significant effect on ATP (TNP-ATP) binding was observed. Our results show that C193 is critical for N-terminal NBD-mediated ATP hydrolysis and represents a unique feature distinguishing the ATP-dependent functionality of the ABC transporters of fungi from those found in bacteria and other eukaryotes.  相似文献   

14.
Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein   总被引:14,自引:0,他引:14  
Cloned cDNAs corresponding to the mitochondrial uncoupling protein of rat brown adipose tissue have been sequenced and the complete amino acid sequence of this unique membranous component is given. The N-terminal sequence of this protein is almost identical to the 14-residue N-terminal sequence previously determined by others for the hamster uncoupling protein. The uncoupling protein has no N-terminal signal extension. We found a significant sequence homology between the uncoupling protein and the ADP/ATP carrier and propose that the nucleotide binding site of the uncoupling protein is localized at the C-terminal end.  相似文献   

15.
The gastric H,K-ATPase is an active transport protein that is responsible for the maintenance of a large pH gradient across the secretory canaliculus of the mammalian parietal cell. Acid secretion across these epithelial cell membranes is coupled to the potassium-stimulated hydrolysis of ATP catalyzed by H,K-ATPase, but the mechanism of coupling between ion transport and ATP hydrolysis is unknown. In order to investigate the enzymatic mechanism of this coupling, a peptide derived from the ATP binding site of H,K-ATPase has been purified and its amino acid sequence has been determined. The peptide was identified by the incorporation of a fluorescent probe, fluorescein 5'-isothiocyanate (FITC), into the active site before trypsin digestion of the protein. The labeling of the enzyme by FITC was associated with the irreversible inhibition of enzymatic activity, and both the labeling of the tryptic peptide and inhibition of activity were prevented when the reaction was performed in the presence of ATP. At 100% inhibition of activity, 3.5 +/- 1.6 nmol of FITC were incorporated per mg of protein. The amino acid sequence of the active site peptide is His-Val-Leu-Val-Met-Lys-Gly-Ala-Pro-Glu-Gln-Leu-Ser-Ile-Arg, and FITC reacts with the lysine. This sequence is very similar to sequences of fluorescein-labeled peptides from the ATP binding sites of Na,K-ATPase and Ca2+-ATPase, and suggests that the active site structures of these ion transport ATPases are similar.  相似文献   

16.
From cell membrane to nucleotides: the phosphate regulon in Escherichia coli   总被引:16,自引:0,他引:16  
Most of the essential cellular components, like nucleic acids, lipids and sugars, are phosphorylated. The phosphate equilibrium in Escherichia coli is regulated by the phosphate (Pi) input from the surrounding medium. Some 90 proteins are synthesized at an increased rate during Pi starvation and the global control of the cellular metabolism requires cross-talk with other regulatory mechanisms. Since the Pi concentration is normally low in E. coli's natural habitat, these cells have devised a mechanism for synthesis of about 15 proteins to accomplish two specific functions: transport of Pi and its intracellular regulation. The synthesis of these proteins is controlled by two genes (the phoB-phoR operon), involving both negative and positive functions. PhoR protein is a histidine protein kinase, induced in Pi starvation and is a transmembrane protein. It phosphorylates the regulator protein PhoB which is also Pi starvation-induced. The PhoB phosphorylated form binds specifically to a DNA sequence of 18 nucleotides (the pho Box), which is part of the promoters of the Pho genes. The genes controlled by phoB constitute the Pho regulon. The repression of phoA (the gene encoding alkaline phosphatase) by high Pi concentrations in the medium requires the presence of an intact Pst operon (pstS, pstC, pstA, pstB and phoU) and phoR. The products of pstA and pstC are membrane bound, whereas the product of pstS is periplasmic and PstB and PhoU proteins are cytoplasmic. The function of the PhoU protein may be regulated by cofactor nucleotides and may be involved in signaling the activation of the regulon via PhoR.  相似文献   

17.
Excess recA protein, a protein essential to general genetic recombination in Escherichia coli, promotes a sequence of formation and dissociation of D-loops from negative superhelical closed circular double-stranded DNA (form I DNA) and homologous single-stranded fragments in the presence of excess ATP, resulting in inactivation of the form I DNA without apparent damage to the DNA. The dissociation of D-loops is accompanied by hydrolysis of ATP to ADP that apparently depends on homologous DNA molecules (homology-dependent ATP hydrolysis). However, at a lower concentrations of ATP, we observed anomalous kinetics in the formation and dissociation of D-loops; as the concentration of ATP was decreased, there was a progressively smaller dissociation of D-loops and a faster resynthesis in the second phase, without changing the rate of the first formation of D-loops. This anomaly might suggest that, as the increase in the amount of ADP relative to that of ATP, dissociation form I DNA is stimulated before formation of D-loops is inhibited. We found that addition of ADP inhibited competitively both formation and dissociation of D-loops and that the latter process was more sensitive to the inhibition than was the former process. Addition of a sufficient amount of ADP to inhibit both formation and dissociation of D-loops, cessation of homology-dependent hydrolysis of ATP, or incubation at low temperature resulted in reactivation of form I DNA that had been inactivated by the sequence. In the presence of an ATP-regenerating system, we confirmed our previous result that limiting the amount of recA protein also causes anomalous kinetics in the formation and dissociation of D-loops. These observations indicate that the formation and dissociation of D-loops and the inactivation and reactivation of form I DNA make a circular reaction sequence.  相似文献   

18.
Liu Y  Pilankatta R  Hatori Y  Lewis D  Inesi G 《Biochemistry》2010,49(46):10006-10012
ATP7A and ATP7B are P-type ATPases required for copper homeostasis and involved in the etiology of Menkes and Wilson diseases. We used heterologous expression of ATP7A or ATP7B in COS-1 cells infected with adenovirus vectors to characterize differential features pertinent to each protein expressed in the same mammalian cell type, rather than to extrinsic factors related to different cells sustaining expression. Electrophoretic analysis of the expressed protein, before and after purification, prior or subsequent to treatment with endoglycosidase, and evidenced by protein or glycoprotein staining as well as Western blotting, indicates that the ATP7A protein is glycosylated while ATP7B is not. This is consistent with the prevalence of glycosylation motifs in the ATP7A sequence, and not in ATP7B. ATP7A and ATP7B undergo copper-dependent phosphorylation by utilization of ATP, forming equal levels of an "alkali labile" phosphoenzyme intermediate that undergoes similar catalytic (P-type ATPase) turnover in both enzymes. In addition, incubation with ATP yields an "alkali stable" phosphoprotein fraction, attributed to phosphorylation of serines. Alkali stable phosphorylation occurs at lower levels in ATP7A, consistent with a different distribution of serines in the amino acid sequence. Immunostaining of COS-1 cells sustaining heterologous expression shows initial association of both ATP7A and ATP7B with Golgi and the trans-Golgi network. However, in the presence of added copper, ATP7A undergoes prevalent association with the plasma membrane while ATP7B exhibits intense trafficking with cytosolic vesicles. Glycosylation of ATP7A and phosphorylation of ATP7B apparently contribute to their different trafficking and membrane association when expressed in the same cell type.  相似文献   

19.
The alpha-subunit of ATP synthase from mitochondria is a major component of the extrinsic membrane sector of the enzyme. It is encoded in nuclear DNA. A family of overlapping complementary DNA clones encoding its precursor has been isolated from a bovine library by using in the first instance a mixture of 128 synthetic oligonucleotides designed on the basis of the known protein sequence, and the sequence of the full-length cDNA has been determined. The deduced protein sequence shows that the alpha-subunit of ATP synthase has a presequence of 43 amino acids that is not present in the mature protein. Presumably it directs the protein into the mitochondrial matrix and is removed during the import process. The encoded protein sequence is also longer by one amino acid at its C-terminal end than the protein isolated from F1-ATPase, but this alanine residue may have been removed artifactually during release of the F1-ATPase particle from the inner mitochondrial membrane. With the exception of one uncertainty caused by an ambiguity at one position in the nucleotide sequence, the mature protein sequence encoded in the cDNA is exactly the same as the sequence determined previously by direct analysis of the protein isolated from bovine heart mitochondria [Walker et al. (1985) J. Mol. Biol. 184, 677-701]. The cDNA sequence differs in 158 nucleotides over a region of alignment of 1097 nucleotides from a partial cDNA for the alpha-subunit that has been isolated from a bovine cDNA derived from liver RNA [Breen (1988) Biochem. Biophys. Res. Commun. 152, 264-269].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Phosphatidylserine (PtdSer) is transported from its site of synthesis in the endoplasmic reticulum to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole and decarboxylated to form phosphatidylethanolamine. Recent biochemical and genetic evidence has implicated the C2 domain of Psd2p and a membrane-bound form of the phosphatidylinositol binding/transfer protein, PstB2p, as essential for this transport process. We devised a reconstituted system in which chemically defined donor membranes function to transfer PtdSer to the biological acceptor membranes containing Psd2p. The transfer of PtdSer is poor when the donor membranes have a high degree of curvature but markedly enhanced when the membranes are relatively planar (> or =400-nm diameter). PtdSer transfer is also dependent upon both the bulk and the surface concentrations of the lipid, with pure PtdSer vesicles acting as the most efficient donors at all concentrations. The lipid transfer from donor membranes containing either 100% PtdSer or 50% PtdSer at a fixed concentration (e.g. 250 microM PtdSer) differs by a factor of 20. Surface dilution of PtdSer by choline, ethanolamine, glycerol, and inositol phospholipids markedly inhibits PtdSer transfer, whereas phosphatidic acid (PtdOH) stimulates the transfer. Most importantly, the transfer of PtdSer from liposomes to Psd2p fails to occur in acceptor membranes from strains lacking PstB2p or the C2 domain of Psd2p. These data support a model for PtdSer transport from planar domains highly enriched in PtdSer or in PtdSer plus PtdOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号