首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is very important to be able to distinguish between selectively significant genetic variability and selectively-neutral one for quantitative analysis of genetic differentiation in human (and any other) populations. The key to the problem is to determine a start-point for detection of neutral genetic variability, which will help to establish alignment of adaptive and neutral forces operating in genetic differentiation. The purpose of this work is to adduce proofs in favour of mean Fst value for a sample of gene loci as of the start-point for measuring neutrality level of genetic differentiation. These proofs came from various demographic and onomastic characteristics of ethnic groups as well as from genetic chronology of ethnic history which is in good concordance with actual historical chronology of ethnic groups. Once the start-point for testing neutrality is determined, it becomes possible to reveal the selective pressure to which various human genes are undergone and to elucidate adaptive structure of mankind's genetic pool. It was shown that only 15 alleles from 49 belonging to 20 polymorphic loci can be considered selectively neutral.  相似文献   

2.
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.  相似文献   

3.
The FAH1 and F3H genes encode ferulate-5-hydroxylase and flavanone-3-hydroxylase, which are enzymes in the pathways leading to the synthesis of sinapic acid esters and flavonoids, respectively. Nucleotide variation at these genes was surveyed by sequencing a sample of 20 worldwide Arabidopsis thaliana ecotypes and one Arabidopsis lyrata spp. petraea stock. In contrast with most previously studied genes, the percentage of singletons was rather low in both the FAH1 and the F3H gene regions. There was, therefore, no footprint of a recent species expansion in the pattern of nucleotide variation in these regions. In both FAH1 and F3H, nucleotide variation was structured into two major highly differentiated haplotypes. In both genes, there was a peak of silent polymorphism in the 5' part of the coding region without a parallel increase in silent divergence. In FAH1, the peak was centered at the beginning of the second exon. In F3H, nucleotide diversity was highest at the beginning of the gene. The observed pattern of variation in both FAH1 and F3H, although suggestive of balancing selection, was compatible with a neutral model with no recombination.  相似文献   

4.
Balanovskaia EV  Nurbaev SD 《Genetika》1998,34(11):1559-1573
A new approach for investigating the selective structure of the gene pool reflecting the type and intensity of selection is proposed. Selection pressure is estimated on the basis of interpopulation gene diversity with the use of the selection intensity index: RS(i) = NeS(i) = 1/4(1/FST(i)-1/Fe). Distributions of RS(i) in gene pools of indigenous populations from all continents and five subregions of the northeastern Eurasia were examined. It was shown that, of all theoretical distributions, only beta-distributions provide a good approximation of RS(i) estimates. Based on the confidence intervals of RS obtained from beta-distributions, genes can be grouped into the three following classes according to their selective structure: LOWER DIFF, NEUTRAL, and SUPER DIFF. These classes, respectively, include genes subjected mainly to stabilizing selection (RS(i) > 0; LOWER DIFF), genes subjected mainly to differentiating selection (RS(i) < 0; SUPER DIFF), and arbitrarily selectively neutral genes (RS(i) approximately 0; NEUTRAL). Simulation of gene pool sampling (10(6) samples from 50 markers for each gene pool) allowed us to characterize the selective structure by determining markers that fall into the same selective class irrespective of the variant for the sampling process. The selective structure of gene pools from six continents (Europe, Asia, Africa, Australia, America, and southeastern Eurasia) and five subregions of northeastern Eurasia was characterized. It was shown that approximately one-third of genes is subjected to selection irrespective of the hierarchical level of the region. In gene pools of Europe, northeastern Eurasia, and European and Ural subregions, the proportion of genes under stabilizing selection was higher, the proportion of selectively neutral genes, lower. Debatable issues of tests for selective neutrality based on heterogeneity of interpopulation gene diversity are considered. These issues include the effect on FST of the hierarchical population structure, sample size, number of subpopulations, and other factors that shift estimates of gene selective values.  相似文献   

5.
6.
Nucleotide variation was studied in a 1.1 kb section of the coding region of an Esterase gene (Est-A) that maps in the center of the segments rearranged by polymorphic inversions in the cactophilic Drosophila buzzatii. We examine 30 homozygous second-chromosome lines differing in gene arrangement and three D. koepferae isofemale lines as outgroups. Our data show that Est-A is a highly polymorphic gene at both synonymous and replacement sites. Significant departures from homogeneity in the distribution of the ratio of silent polymorphism to divergence predicted by the neutral theory reveals a local excess of silent polymorphism. This is consistent with the presence of two apparent narrow peaks of elevated silent polymorphism surrounding nonconservative amino acid substitutions. These polymorphisms as well as others at synonymous and nonsynonymous sites are shared with D. koepferae. We suggest that the presence of shared nucleotide polymorphisms is probably due to interspecific gene flow and/or balancing selection acting on replacement variants and/or to a decreased probability of loss of ancestral polymorphisms caused by linkage to an adaptive inversion polymorphism. Recurrent mutation and persistence of neutral ancestral polymorphisms cannot, however, be ruled out. The analysis of the distribution of nucleotide variation among the three chromosomal arrangements sampled reveals that derived arrangements (J and JZ(3)) are less polymorphic than the ancestral ST, and that the widely distributed ST and J arrangements are genetically differentiated. However, a significant number of polymorphisms are shared between arrangements, suggesting frequent exchange either from gene conversion or from double crossovers in heterokaryotypes. Finally, our present results in combination with data of sequence variation at the breakpoints of inversion J suggest that this old gene arrangement has risen in frequency in relatively recent times.  相似文献   

7.
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.  相似文献   

8.
Jing R  Johnson R  Seres A  Kiss G  Ambrose MJ  Knox MR  Ellis TH  Flavell AJ 《Genetics》2007,177(4):2263-2275
Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yields a genetic diversity tree whose deep branches, involving wild samples, are preserved in a tree derived from a polymorphic retrotransposon insertions in an identical sample set. Thus, gene regions and intergenic "junk DNA" share a consistent picture for the genomic diversity of Pisum, despite low linkage disequilibrium in wild and landrace germplasm, which might be expected to allow independent evolution of these very different DNA classes. Additional lines of evidence indicate that recombination has shuffled gene haplotypes efficiently within Pisum, despite its high level of inbreeding and widespread geographic distribution. Trees derived from individual gene loci show marked differences from each other, and genetic distance values between sample pairs show high standard deviations. Sequence mosaic analysis of aligned sequences identifies nine loci showing evidence for intragenic recombination. Lastly, phylogenetic network analysis confirms the non-treelike structure of Pisum diversity and indicates the major germplasm classes involved. Overall, these data emphasize the artificiality of simple tree structures for representing genomic sequence variation within Pisum and emphasize the need for fine structure haplotype analysis to accurately define the genetic structure of the species.  相似文献   

9.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

10.
The variation in gene frequency among populations or between generations within a population is a result of breeding structure and selection. But breeding structure should affect all loci and alleles in the same way. If there is significant heterogeneity between loci in their apparent inbreeding coefficients F=sp2/p(1-p), this heterogeneity may be taken as evidence for selection. We have given the statistical properties of F and shown how tests of heterogeneity can be made. Using data from human populations we have shown highly significant heterogeneity in F values for human polymorphic genes over the world, thus demonstrating that a significant fraction of human polymorphisms owe their current gene frequencies to the action of natural selection. We have also applied the method to temporal variation within a population for data on Dacus oleae and have found no significant evidence of selection.  相似文献   

11.
Contrasting patterns of variation in MHC loci in the Alpine newt   总被引:1,自引:1,他引:0  
Babik W  Pabijan M  Radwan J 《Molecular ecology》2008,17(10):2339-2355
Major histocompatibility complex (MHC) genes are essential in pathogen recognition and triggering an adaptive immune response. Although they are the most polymorphic genes in vertebrates, very little information on MHC variation and patterns of evolution are available for amphibians, a group known to be declining rapidly worldwide. As infectious diseases are invoked in the declines, information on MHC variation should contribute to devising appropriate conservation strategies. In this study, we examined MHC variation in 149 Alpine newts ( Mesotriton alpestris ) from three allopatric population groups in Poland at the northeastern margin of the distribution of this species. The genetic distinctiveness of the population groups has previously been shown by studies of skin graft rejection, allozymes and microsatellites. Two putative expressed MHC II loci with contrasting levels of variation and clear evidence of gene conversion/recombination between them were detected. The Meal-DAB locus is highly polymorphic (37 alleles), and shows evidence of historical positive selection for amino acid replacements and substantial geographical differentiation in allelic richness. On the contrary, the Meal-DBB locus exhibits low polymorphism (three alleles differing by up to two synonymous substitutions) and a uniform distribution of three alleles among geographical regions. The uniform frequencies of the presumptively neutral Meal-DBB alleles may be explained by linkage to Meal-DAB . We found differences in allelic richness in Meal-DAB between regions, consistent with the hypothesis that genetic drift prevails with increasing distance from glacial refugia. Pseudogene loci appear to have evolved neutrally. The level of DAB variation correlated with variation in microsatellite loci, implying that selection and drift interplayed to produce the pattern of MHC variation observed in marginal populations of the Alpine newt.  相似文献   

12.
There is general agreement that the current European gene pool is mainly derived from Palaeolithic hunting-gathering and Neolithic farming ancestors, but different studies disagree on the relative weight of these contributions. We estimated admixture rates in European populations from data on 377 autosomal microsatellite loci in 235 individuals, using five different numerical methods. On average, the Near Eastern (and presumably Neolithic) contribution was between 46 and 66%, and admixture estimates showed, with all methods, a strong and significant negative correlation with distance from the Near East. If the assumptions of the model are approximately correct, i.e. if the Basques' and Near Easterners' genomes represent a good approximation to the Palaeolithic and Neolithic settlers of Europe, respectively, these results imply that half or more of the Europeans' genes are descended from Near Eastern ancestors who immigrated in Europe 10000 years ago. If these assumptions are incorrect, our results show anyway that clinal variation is the rule in the Europeans' genomes and that lower estimates of Near Eastern admixture obtained from the analysis of single markers do not reflect the patterns observed at the genomic level.  相似文献   

13.
Toll-like receptors (TLRs) are a major group of proteins that recognize molecular components of infectious agents, known as pathogen associated molecular patterns (PAMPs). The structure of these genes is similar and characterized by the presence of an ectodomain, a signal transmembrane segment and a highly conserved cytoplasmic domain. The latter domain is homologous to the human interleukin-1 receptor (IL1R) and human IL-18 receptor (IL-18R) and designated TIR domain. The latter domain of the TLR genes was suggested to be very conservative and its evolution is driven by purifying selection. Variability and evolution of the TIR sequences of TLR2 gene were studied in three hare populations from Tunisia with different ecological characteristics (NT–North Tunisia with Mediterranean, CT–Central Tunisia with semi-arid, and ST–South Tunisia with arid climate). Sequencing of a 372 bp fragment of TIR2 revealed 25 alleles among 110 hares. Twenty variable nucleotide positions were detected, of which 7 were non-synonymous. The highest variability was observed in CT, with 16 polymorphic positions. In ST, only 4 polymorphic nucleotide positions were detected with all diversity values lower than those recorded for the other two populations. By using several approaches, no positive selection was detected. However, evidence of purifying selection was found at two positions. The logistic models of the most common TIR2 protein variant that we run to examine whether its occurrence was affected by climatic variation independent of the geographic sample location suggested only a longitudinal effect. Finally, the mapping of the non-synonymous mutations to the inferred tertiary protein structure showed that they were all localized in the different loop regions. Among all non-synonymous substitutions, three were suggested to be deleterious as evidenced by PROVEAN analysis. The observed patterns of variability characterized by low genetic diversity in ST might suggest that the TIR region was more affected, than other markers, by genetic drift or/and that these patterns were shaped by different selective pressures under different ecological conditions. Notably, this low diversity was not detected by other (putatively neutral) microsatellite markers analysed in the course of other studies. But low diversity was also found for two MHC class II adaptive immune genes. As expected from functionally important regions, the evolution of the TIR2 domain is mainly driven by purifying selection. However, the occurrence of deleterious non-synonymous substitutions might highlight the flexible evolution of the TIR genes and/or their interactions with other proteins.  相似文献   

14.
This article reviews recent advances that shed light on plant disease resistance genes, beginning with a brief overview of their structure, followed by their genomic organization and evolution. Plant disease resistance genes have been exhaustively investigated in terms of their structural organization, sequence evolution and genome distribution. There are probably hundreds of NBS-LRR sequences and other types of R-gene-like sequences within a typical plant genome. Recent studies revealed positive selection and selective maintenance of variation in plant resistance and defence-related genes. Plant resistance genes are highly polymorphic and have diverse recognition specificities. R-genes occur as members of clustered gene families that have evolved through duplication and diversification. These genes appear to evolve more rapidly than other regions of the genome, and domains such as the leucine-rich repeat, are subject to adaptive selection  相似文献   

15.
Zhang X  Shiu SH  Shiu S  Cal A  Borevitz JO 《PLoS genetics》2008,4(3):e1000032
Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5'CCGG3' restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5' and 3' ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation.  相似文献   

16.
Kamper SM  McKinney CE 《Immunogenetics》2002,53(12):1047-1054
Sequence, PCR and Southern data are presented as evidence that, as in mammals, two gene loci encode C regions of the TCR beta chain in the bicolor damselfish, Stegastes partitus. The loci are distinguished by an insertion of ten amino acids in the c-d loop at one locus and by a high interlocus divergence of the third intron and fourth exon sequences. Unlike their mammalian counterparts, the damselfish TCRBC genes encode highly polymorphic regions. None of the eight complete cDNA or four partial genomic DNA sequences presented from a single animal are identical; and three of the four animals examined are heterozygous at both loci, suggesting high heterozygosity in the damselfish population. Coding regions of the eight cDNA clones differ by up to 12% at the DNA level and 23% at the amino acid level. Polymorphism is concentrated primarily in the less evolutionarily conserved regions, suggesting that this variation may be selectively neutral. However, a comparison of the variation between synonymous and non-synonymous sites suggests that at least a portion of the observed variation results from selection. As in mammals, a gradient of sequence homogenization between the two loci is observed. Data presented here suggest that both interlocus homogenization and the sharing of polymorphic segments are likely achieved by partial gene conversion.  相似文献   

17.
Père David's deer (Elaphurus davidianus) is a highly inbred species that arose from 11 founders but now comprises a population of about 3,000 individuals, making it interesting to investigate the adaptive variation of this species from the major histocompatibility complex (MHC) perspective. In this study, we isolated Elda-MHC class I loci using magnetic bead-based cDNA hybridization, and examined the molecular variations of these loci using single-strand conformation polymorphism (SSCP) and sequence analysis. We obtained seven MHC class I genes, which we designated F1, F12, G2, I7, AF, I8, and C1. Our analyses of stop codons, phylogenetic trees, amino acid conservation, and G+C content revealed that F1, F12, G2, and I7 were classical genes, AF was a nonclassical gene, and I8 and C1 were pseudogenes. Our subsequent molecular examinations showed that the diversity pattern in the Père David's deer was unusual. Most mammals have more polymorphic classical class I loci vs. the nonclassical and neutral genes. In contrast, the Père David's deer was found to be monomorphic at classical genes F1, F12, G2, and I7, dimorphic at the nonclassical AF gene, dimorphic at pseudogene I8, and tetramorphic at pseudogene C1. The adverse polymorphism patterns of Elda-I genes might provide evidence for selection too faster deplete MHC variation than drift in the bottlenecked populations, while the postbottleneck tetramorphism of the C1 pseudogene appears to be evidence of strong historical balancing selection.  相似文献   

18.
Pathogens are recognized as major drivers of local adaptation in wildlife systems. By determining which gene variants are favored in local interactions among populations with and without disease, spatially explicit adaptive responses to pathogens can be elucidated. Much of our current understanding of host responses to disease comes from a small number of genes associated with an immune response. High‐throughput sequencing (HTS) technologies, such as genotype‐by‐sequencing (GBS), facilitate expanded explorations of genomic variation among populations. Hybridization‐based GBS techniques can be leveraged in systems not well characterized for specific variants associated with disease outcome to “capture” specific genes and regulatory regions known to influence expression and disease outcome. We developed a multiplexed, sequence capture assay for red foxes to simultaneously assess ~300‐kbp of genomic sequence from 116 adaptive, intrinsic, and innate immunity genes of predicted adaptive significance and their putative upstream regulatory regions along with 23 neutral microsatellite regions to control for demographic effects. The assay was applied to 45 fox DNA samples from Alaska, where three arctic rabies strains are geographically restricted and endemic to coastal tundra regions, yet absent from the boreal interior. The assay provided 61.5% on‐target enrichment with relatively even sequence coverage across all targeted loci and samples (mean = 50×), which allowed us to elucidate genetic variation across introns, exons, and potential regulatory regions (4,819 SNPs). Challenges remained in accurately describing microsatellite variation using this technique; however, longer‐read HTS technologies should overcome these issues. We used these data to conduct preliminary analyses and detected genetic structure in a subset of red fox immune‐related genes between regions with and without endemic arctic rabies. This assay provides a template to assess immunogenetic variation in wildlife disease systems.  相似文献   

19.
A systematic survey of six intergenic regions flanking the human HLA-B locus in eight haplotypes reveals the regions to be up to 20 times more polymorphic than the reported average degree of human neutral polymorphism. Furthermore, the extent of polymorphism is directly related to the proximity to the HLA-B locus. Apparently linkage to HLA-B locus alleles, which are under balancing selection, maintains the neutral polymorphism of adjacent regions. For these linked polymorphisms to persist, recombination in the 200-kb interval from HLA-B to TNF must occur at a low frequency. The high degree of polymorphism found distal to HLA-B suggests that recombination is uncommon on both sides of the HLA-B locus. The least-squares estimate is 0.15% per megabase with an estimated range from 0.02 to 0.54%. These findings place strong restrictions on possible recombinational mechanisms for the generation of diversity at the HLA-B.  相似文献   

20.
The highly polymorphic genes of the major histocompatibility complex (MHC) are involved in disease resistance, mate choice and kin recognition. Therefore, they are widely used markers for investigating adaptive variation. Although selection is the key driver, gene flow and genetic drift also influence adaptive genetic variation, sometimes in opposing ways and with consequences for adaptive potential. To further understand the processes that generate MHC variation, it is helpful to compare variation at the MHC with that at neutral genetic loci. Differences in MHC and neutral genetic variation are useful for inferring the relative influence of selection, gene flow and drift on MHC variation. To date, such investigations have usually been undertaken at a broad spatial scale. Yet, evolutionary and ecological processes can occur at a fine spatial scale, particularly in small or fragmented populations. We investigated spatial patterns of MHC variation among three geographically close, naturally discrete, sampling sites of Egernia stokesii, an Australian lizard. The MHC of E. stokesii has recently been characterized, and there is evidence for historical selection on the MHC. We found E. stokesii MHC weakly differentiated among sites compared to microsatellites, suggesting selection, acting similarly at each site, has outweighed any effects of low gene flow or of genetic drift on E. stokesii MHC variation. Our findings demonstrate the strength of selection in shaping patterns of MHC variation or consistency at a fine spatial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号