首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Doll E  Molnar M  Cuanoud G  Octobre G  Latypov V  Ludin K  Kohli J 《Genetics》2008,180(2):727-740
To determine whether recombination and/or sister-chromatid cohesion affect the timing of meiotic prophase events, the horsetail stage and S phase were analyzed in Schizosaccharomyces pombe strains carrying mutations in the cohesin genes rec8 or rec11, the linear element gene rec10, the pairing gene meu13, the double-strand-break formation genes rec6, rec7, rec12, rec14, rec15, and mde2, and the recombination gene dmc1. The double-mutant strains rec8 rec11 and rec8 rec12 were also assayed. Most of the single and both double mutants showed advancement of bulk DNA synthesis, start of nuclear movement (horsetail stage), and meiotic divisions by up to 2 hr. Only mde2 and dmc1 deletion strains showed wild-type timing. Contrasting behavior was observed for rec8 deletions (delayed by 1 hr) compared to a rec8 point mutation (advanced by 1 hr). An hypothesis for the role of cohesin and recombination proteins in the control of the G1-to-S transition is proposed. Finally, differences between azygotic meiosis and two other types of fission yeast meiosis (zygotic and pat1-114 meiosis) are discussed with respect to possible control steps in meiotic G1.  相似文献   

4.
Y. Lin  K. L. Larson  R. Dorer    G. R. Smith 《Genetics》1992,132(1):75-85
The Schizosaccharomyces pombe rec7 and rec8 genes, which are required for meiotic intragenic recombination but not for mitotic recombination, have been cloned and their DNA sequences determined. Genetic and physical analyses demonstrated that the cloned fragments contained the rec genes rather than rec mutation suppressors. A 1.6-kb DNA fragment contained a functional rec7 gene, and a 2.1-kb fragment contained a functional rec8 gene. The nucleotide sequences of these fragments revealed open reading frames predicting 249 amino acids for the rec7 gene product and 393 amino acids for the rec8 gene product. Northern hybridization analysis showed that both rec gene mRNAs were detectable only at 2-3 hr after induction of meiosis. The absence of these mRNAs in mitosis and their disappearance at 4 hr and later in meiosis suggest that the rec7 and rec8 gene products may be involved primarily in the early steps of meiotic recombination in S. pombe.  相似文献   

5.
J Engebrecht  S Masse  L Davis  K Rose  T Kessel 《Genetics》1998,148(2):581-598
A screen was designed to identify Saccharomyces cerevisiae mutants that were defective in meiosis yet proficient for meiotic ectopic recombination in the return-to-growth protocol. Seven mutants alleles were isolated; two are important for chromosome synapsis (RED1, MEK1) and five function independently of recombination (SPO14, GSG1, SPOT8/MUM2, 3, 4). Similar to the spoT8-1 mutant, mum2 deletion strains do not undergo premeiotic DNA synthesis, arrest prior to the first meiotic division and fail to sporulate. Surprisingly, although DNA replication does not occur, mum2 mutants are induced for high levels of ectopic recombination. gsg1 diploids are reduced in their ability to complete premeiotic DNA synthesis and the meiotic divisions, and a small percentage of cells produce spores. mum3 mutants sporulate poorly and the spores produced are inviable. Finally, mum4-1 mutants produce inviable spores. The meiotic/sporulation defects of gsg1, mum2, and mum3 are not relieved by spo11 or spo13 mutations, indicating that the mutant defects are not dependent on the initiation of recombination or completion of both meiotic divisions. In contrast, the spore inviability of the mum4-1 mutant is rescued by the spo13 mutation. The mum4-1 spo13 mutant undergoes a single, predominantly equational division, suggesting that MUM4 functions at or prior to the first meiotic division. Although recombination is variably affected in the gsg1 and mum mutants, we hypothesize that these mutants define genes important for aspects of meiosis not directly related to recombination.  相似文献   

6.
This paper describes the identification, cloning and phenotypic analysis of SPO14, a new gene required for meiosis and spore formation. Studies of strains carrying a temperature-sensitive mutation or a disruption/duplication allele indicate that spo14 mutants have the unusual property of being able to return to mitotic division, even from the late stages of meiotic development. Early meiotic events, such as DNA replication and intragenic and intergenic recombination, occur normally. In contrast, later meiotic processes are defective in spo14 mutants: the meiosis I division appears to be executed at slightly depressed levels, the meiosis II division is reduced more severely, and no spores are formed. Epistasis tests using mutants defective in recombination or reductional division support these findings. Based on these data, we suggest that the SPO14 gene product is involved in the coordinate induction of late meiotic events and that this induction is responsible for the phenomenon of commitment.  相似文献   

7.
During meiosis homologous chromosomes replicate once, pair, experience recombination, and undergo two rounds of segregation to produce haploid meiotic products. The rec8(+), rec10(+), and rec11(+) genes of the fission yeast Schizosaccharomyces pombe exhibit similar specificities for meiotic recombination and rec8(+) is required for sister chromatid cohesion and homolog pairing. We applied cytological and genetic approaches to identify potential genetic interactions and to gauge the fidelity of meiotic chromosome segregation in the mutants. The rec8(+) gene was epistatic to rec10(+) and to rec11(+), but there was no clear epistatic relationship between rec10(+) and rec11(+). Reciprocal (crossover) recombination in the central regions of all three chromosomes was compromised in the rec mutants, but recombination near the telomeres was nearly normal. Each of the mutants also exhibited a high rate of aberrant segregation for all three chromosomes. The rec8 mutations affected mainly meiosis I segregation. Remarkably, the rec10 and rec11 mutations, which compromised recombination during meiosis I, affected mainly meiosis II segregation. We propose that these genes encode regulators or components of a "meiotic chromatid cohesion" pathway involved in establishing, maintaining, and appropriately releasing meiotic interactions between chromosomes. A model of synergistic interactions between sister chromatid cohesion and crossover position suggests how crossovers and cohesion help ensure the proper segregation of chromosomes in each of the meiotic divisions.  相似文献   

8.
In the yeast Saccharomyces cerevisiae at least 10 genes are required to begin meiotic recombination. A new early recombination gene REC103 is described in this paper. It was initially defined by the rec103-1 mutation found in a selection for mutations overcoming the spore inviability of a rad52 spo13 haploid strain. Mutations in REC103 also rescue rad52 in spo13 diploids. rec103 spo13 strains produce viable spores; these spores show no evidence of meiotic recombination. rec103 SPO13 diploids produce no viable spores, consistent with the loss of recombination. Mutations in REC103 do not affect mitotic recombination, growth, or repair. These phenotypes are identical to those conferred by mutations in several other early meiotic recombination genes (e.g., REC102, REC104, REC114, MEI4, MER2, and SPO11). REC103 maps to chromosome VII between ADE5 and RAD54. Cloning and sequencing of REC103 reveals that REC103 is identical to SKI8, a gene that depresses the expression of yeast double-stranded (``killer') (ds)RNA viruses. REC103/SKI8 is transcribed in mitotic cells and is induced ~15-fold in meiosis. REC103 has 26% amino acid identity to the Schizosaccharomyces pombe rec14(+) gene; mutations in both genes confer similar meiotic phenotypes, suggesting that they may play similar roles in meiotic recombination.  相似文献   

9.
Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication, a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe, we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) were deficient in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes.  相似文献   

10.
Most organisms form protein-rich, linear, ladder-like structures associated with chromosomes during early meiosis, the synaptonemal complex. In Schizosaccharomyces pombe, linear elements (LinEs) are thread-like, proteinacious chromosome-associated structures that form during early meiosis. LinEs are related to axial elements, the synaptonemal complex precursors of other organisms. Previous studies have led to the suggestion that axial structures are essential to mediate meiotic recombination. Rec10 protein is a major component of S. pombe LinEs and is required for their development. In this report we study recombination in a number of rec10 mutants, one of which (rec10-155) does not form LinEs, but is predicted to encode a truncated Rec10 protein. This mutant has levels of crossing over and gene conversion substantially higher than a rec10 null mutant (rec10-175) and forms cytologically detectable Rad51 foci indicative of meiotic recombination intermediates. These data demonstrate that while Rec10 is required for meiotic recombination, substantial meiotic recombination can occur in rec10 mutants that do not form LinEs, indicating that LinEs per se are not essential for all meiotic recombination.  相似文献   

11.
D A Thompson  F W Stahl 《Genetics》1999,153(2):621-641
Meiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange.  相似文献   

12.
13.
A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11.  相似文献   

14.
BACKGROUND: The life cycle of most eukaryotic organisms includes a meiotic phase, in which diploid parental cells produce haploid gametes. During meiosis a single round of DNA replication is followed by two rounds of chromosome segregation. In the first, or reductional, division (meiosis I), which is unique to meiotic cells, homologous chromosomes segregate from one another, whereas in the second, or equational, division (Meiosis II) sister centromeres disjoin. Meiotic DNA replication precedes the initiation of recombination by programmed Spo11-dependent DNA double-strand breaks. Recent reports that meiosis-specific cohesion is established during meiotic S phase and that the length of S phase is modified by recombination factors (Spo11 and Rec8) raise the possibility that replication plays a fundamental role in the recombination process. RESULTS: To address how replication influences the initiation of recombination, we have used mutations in the B-type cyclin genes CLB5 and CLB6, which specifically prevent premeiotic replication in the yeast Saccharomyces cerevisiae. We find that clb5 and clb5 clb6 but not clb6 mutants are defective in DSB induction and prior associated changes in chromatin accessibility, heteroallelic recombination, and SC formation. The severity of these phenotypes in each mutant reflects the extent of replication impairment. CONCLUSIONS: This assemblage of phenotypes reveals roles for CLB5 and CLB6 not only in DNA replication but also in other key events of meiotic prophase. Links between the function of CLB5 and CLB6 in activating meiotic DNA replication and their effects on subsequent events are discussed.  相似文献   

15.
16.
Recombination-deficient strains have been proven useful for the understanding of the genetic control of homologous recombination. As the genetic screens used to isolate recombination-deficient (rec(-)) yeast mutants have not been saturated, we sought to develop a simple colony color assay to identify mutants with low or elevated rates of recombination. Using this system we isolated a collection of rec(-) mutants. We report the characterization of the REC41 gene identified in this way. REC41 is required for normal levels of interplasmid recombination and gamma-ray induced mitotic interchromosomal recombination. The rec41-1 mutant failed to grow at 37 degrees C. Microscopic analysis of plated cells showed that 45-50% of them did not form visible colonies at permissive temperature. Haploid cells of the rec41 mutant show the same gamma-ray sensitivity as wild type ones. However, the diploid rec41 mutant shows gamma-ray sensitivity which is comparable with heterozygous REC41/rec41-1 diploid cells. This fact indicates semidominance of the rec41-1 mutation. Diploid strains homozygous for the rec41 rad52 mutations had the same gamma-ray sensitivity as single rad52 diploids and exhibited dramatically decreased growth rate. The expression of the HO gene does not lead to inviability of rec41 cells. The rec41 mutation has an effect on meiosis, likely meiotic recombination, even in the heterozygous state. We cloned the REC41 gene. Sequence analysis revealed that the REC41 gene is encoded by ORF YDR245w. Earlier, this ORF was attributed to MNN10, BED1, SLC2, CAX5 genes. Two multicopy plasmids with suppressers of the rec41-1 mutation (pm21 and pm32) were isolated. The deletion analysis showed that only DNA fragments with the CDC43 and HAC1 genes can partially complement the rec41-1 mutation.  相似文献   

17.
Arabidopsis thaliana MEI1 was first described as a gene involved in male meiosis, encoding a short protein showing homology with a human acrosin-trypsin inhibitor. We have isolated a new allele of mei1, and shown that in both mutants male and female meiosis are affected. In both reproductive pathways, meiosis proceeds while chromosomes become fragmented, resulting in aberrant meiotic products and in a strongly reduced fertility. We have shown that the gene mutated in mei1 mutants actually encodes a protein of 972 amino acids that contains five BRCA1 C-terminus (BRCT) domains and is similar to proteins involved in the response to DNA damage and replication blocks in eukaryotes. During meiosis, recombination is initiated by the formation of DNA double strand breaks (DSBs) induced by the protein SPO11. We analysed meiotic chromosome behaviour of the mei1 mutant in a spo11 mutant background and proved that the meiotic fragmentation observed in mei1 mutants was not the consequence of defects in the repair of meiotic DSBs induced by SPO11. We also analysed the effect of mei1 on the mitotic cell cycle but could not detect any sensitivity of mei1 seedlings to DNA-damaging agents like gamma-rays or UV. Therefore, MEI1 is a BRCT-domain-containing protein that could be specific to the meiotic cell cycle and that plays a crucial role in some DNA repair events independent of SPO11 DSB recombination repair.  相似文献   

18.
Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.  相似文献   

19.
Checkpoint gene function prevents meiotic progression when recombination is blocked by mutations in the recA homologue DMC1. Bypass of dmc1 arrest by mutation of the DNA damage checkpoint genes MEC1, RAD17, or RAD24 results in a dramatic loss of spore viability, suggesting that these genes play an important role in monitoring the progression of recombination. We show here that the role of mitotic checkpoint genes in meiosis is not limited to maintaining arrest in abnormal meioses; mec1-1, rad24, and rad17 single mutants have additional meiotic defects. All three mutants display Zip1 polycomplexes in two- to threefold more nuclei than observed in wild-type controls, suggesting that synapsis may be aberrant. Additionally, all three mutants exhibit elevated levels of ectopic recombination in a novel physical assay. rad17 mutants also alter the fraction of recombination events that are accompanied by an exchange of flanking markers. Crossovers are associated with up to 90% of recombination events for one pair of alleles in rad17, as compared with 65% in wild type. Meiotic progression is not required to allow ectopic recombination in rad17 mutants, as it still occurs at elevated levels in ndt80 mutants that arrest in prophase regardless of checkpoint signaling. These observations support the suggestion that MEC1, RAD17, and RAD24, in addition to their proposed monitoring function, act to promote normal meiotic recombination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号